Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Functions
- Function Notation
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Be%5Eu%5D%3De%5Eu%20%5Ccdot%20u%27)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- eˣ Derivative [Derivative Rule - Chain Rule]:
![\displaystyle J'(x) = \frac{d}{dx}[e^{f(x)}] \cdot \frac{d}{dx}[f(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20J%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7Bf%28x%29%7D%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D)
- Simplify:

<u>Step 3: Evaluate</u>
- Substitute in <em>x</em> [Derivative]:

- Substitute in function values:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Antiderivatives - Integrals
Integration Constant C
Integration Property [Multiplied Constant]: 
Trig Integration: 
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Identify Substitution Variables</u>
u = 3x
du = 3dx
<u>Step 3: Integrate</u>
- [Integral] Rewrite:

- [Integral] U-Substitution:

- [Integral] Trig Integration:
![\displaystyle \frac{1}{3}[-cos(u)] + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B3%7D%5B-cos%28u%29%5D%20%2B%20C)
- [Expression] Multiply:

- [Expression] Back-Substitute:

Answer:
1/20
Step-by-step explanation:
Hope that helped :))
Answer:
y= -2x........eqn i
y=5x+3......eqn ii
substituting the value of Y from eqn i in eqn ii, we get,
-2x=5x+3
-7x=3
x= -3/7
so, y= -2x= -2× (-3/7)
so, y= 6/7
Answer: 48
Step-by-step explanation:
The share of sand in the mixture is 3/7
To make 112 kgs. of concrete, he will need
3/7 x 112 = 48 units of sand