Answer:
≈ 7
Step-by-step explanation:
Answer:
<em></em>
<em></em>
<em></em>
Step-by-step explanation:
<em>Your question is incomplete without an attachment (See attachment)</em>
Required
Determine the area of the shaded part
From the attachment;
<em>Assume that the shaded portion is closed to the right;</em>
<em>Calculate the Area:</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Next;</em>
<em>Calculate the Area of the imaginary triangle (on the right)</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Lastly, calculate the Area of the Shaded Part</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Hence,</em>
<em>The area of the shaded part is 72in²</em>
<span>(1/2) [SIN(X-Y)-SIN(X+Y)]= COS(X)SIN(Y)</span>
It’s $13.75=3x-$2.50 -> $11.25=3x -> $3.75=x
X=g