So the length is 4*28=112mm
The width would be calculated like this:
you draw an equilateral triangle in the middle with sides or 2r(56mm). The based on pythagorean theorem u know that
h=rad(56^2-28^2)=48.497
28+28+h=104.497
The area would be S=l*w which is 11703.7113mm
Answer:
Given that an article suggests
that a Poisson process can be used to represent the occurrence of
structural loads over time. Suppose the mean time between occurrences of
loads is 0.4 year. a). How many loads can be expected to occur during a 4-year period? b). What is the probability that more than 11 loads occur during a
4-year period? c). How long must a time period be so that the probability of no loads
occurring during that period is at most 0.3?Part A:The number of loads that can be expected to occur during a 4-year period is given by:Part B:The expected value of the number of loads to occur during the 4-year period is 10 loads.This means that the mean is 10.The probability of a poisson distribution is given by where: k = 0, 1, 2, . . ., 11 and λ = 10.The probability that more than 11 loads occur during a
4-year period is given by:1 - [P(k = 0) + P(k = 1) + P(k = 2) + . . . + P(k = 11)]= 1 - [0.000045 + 0.000454 + 0.002270 + 0.007567 + 0.018917 + 0.037833 + 0.063055 + 0.090079 + 0.112599 + 0.125110+ 0.125110 + 0.113736]= 1 - 0.571665 = 0.428335 Therefore, the probability that more than eleven loads occur during a 4-year period is 0.4283Part C:The time period that must be so that the probability of no loads occurring during that period is at most 0.3 is obtained from the equation:Therefore, the time period that must be so that the probability of no loads
occurring during that period is at most 0.3 is given by: 3.3 years
Step-by-step explanation:
Step-by-step explanation:
R = 6.5cm and r = 2.3 cm
area of the shaded region = area of the outer circle - area of the inner circle
= πR²-πr²
=π(R²-r²)
=π{(6.5)²-(2.3)²}
=π (42.25-5.29)
= 3.14× 36.96
= 115.866
= 116 cm²