Given:<span>
<span>segment AU = 20x + 108,
UB = 273,
BC = 703,
UV = 444,
AV = 372 and
AC = 589.
</span>Point U lies on AB and
V lies on AC.</span>
UV is perpendicular to
AC.
Therefore, the similar
triangles are AUV and ABC
<span>
So
the similarity is: segment AU / segment UV = segment AB / segment BC</span>
<span>20x + 108 20X + 381
--------- = ---------------
372 589</span>
<span>
(20x + 108)* 589 = (20X + 381)*372</span>
<span>
11780 X + 63612 = 7440X + 141732
4340 X - 78120 = 0
4340 X = 78120</span>
<span>
X = 78120/4340 = 18
</span><span>
Answer:
x = 18</span>
To check:
<span>AU = 20*18 + 108 = 360
+ 108 = 468
AB = 741
468/372 = 741/589 </span>
<span>Which the two are
equal ratios</span>