Answer:
(-1,5)
(3, 1/125)
Step-by-step explanation:
g(x) = (1/5) ^x
Lets check the points
(1,0)
0 = (1/5) ^1
0 = 1/5 False this is not on the graph
(-1,5)
5 = (1/5) ^ -1
Remember negative exponents flip the fraction inside the parentheses
5 = 5/1 True this is on the graph
(3, 1/125)
1/125 = (1/5)^ 3
1/125 = 1^3/ 5^3
1/125 = 1/125 true this is on the graph
(-2,1/25)
1/25 = (1/5) ^-2
Remember negative exponents flip the fraction inside the parentheses
1/25 = 5^2/1^2
1/25 = 25 false this is not on the graph
I would think it would be B
Answer:
x > -11
Step-by-step explanation:
<u>Step 1: Subtract 6 from both sides</u>
-4x + 6 - 6 < 50 - 6
-4x < 44
<u>Step 2: Divide both sides by -4</u>
-4x / -4 < 44 / -4
If you divide by a negative number, you flip the sign.
<em>x > -11</em>
Answer: x > -11
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
It's 15
i took the test
Step-by-step explanation: