1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flauer [41]
4 years ago
13

Write an equation that represents this comparison sentence. 24 is 4 times as many as 6

Mathematics
1 answer:
Anna007 [38]4 years ago
6 0

Answer:

4x6=24

Since 24 is 4 times as many as six, it means 4x6 is 24.

You might be interested in
What are 2 different ways the number 149.06
Ymorist [56]
You can write it in expanded form as 100+40+9+.06
or in word form as one hundred fourth nine point zero six
7 0
3 years ago
Finding the distance between the points (−3,−2)<br> and (7,4)
ycow [4]

Answer:

11.661904

plz mark me as brainliest.

8 0
3 years ago
Pls help me
Vladimir [108]
<h3>Learning Task 1</h3>

Correct responses;

\displaystyle 1. \hspace{0.3 cm} 7^{-1} = \frac{1}{7}

2. (14·a·b·c)⁰ = 1

\displaystyle 3. \hspace{0.3 cm} 10^{-9} = \frac{1}{10^9}

4. 5·(x·y)⁰ = 5

5. 0¹⁵ = 0

\displaystyle 6. \hspace{0.3 cm} \frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4} = 4 \cdot x^3

\displaystyle 7. \hspace{0.3 cm} \left(\frac{5 \cdot x^0}{y} \right)^{-1} = \frac{y}{5}

8. \hspace{0.3 cm}\displaystyle \frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}  = \frac{10 \cdot a^7  \cdot b^6}{c^7}

\displaystyle 9. \hspace{0.3 cm} \frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}  =  \frac{1}{y^{5} \cdot z^2}

\displaystyle 10. \hspace{0.3 cm} \left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2} = 100

11. \displaystyle \hspace{0.3 cm} \left(\frac{(a \cdot b)}{9} \right)^{-1} = \frac{9}{a \cdot b}

\displaystyle 12. \hspace{0.3 cm} \frac{9}{x^{-2}}  = 9 \cdot x^2

13. \displaystyle \hspace{0.3 cm} \frac{12 \cdot b^{-3}}{a^{-4}}  = \frac{12 \cdot a^4}{b^3}

14. \displaystyle \hspace{0.3 cm} \frac{1}{a^{-5 \cdot n}}  =a^{5 \cdot n}

15. \displaystyle \hspace{0.3 cm} \left(\frac{1}{2} \right)^{-5} = 32

<h3>Methods by which the above expressions are simplified</h3>

The given expressions expressed into non zero and non negative exponents are;

\displaystyle 1. \hspace{0.3 cm} \mathbf{7^{-1}} = \underline{\frac{1}{7}}

2. (14·a·b·c)⁰ = 14⁰ × a⁰ × b⁰ × c⁰ = 1 × 1 × 1 × 1 =<u> 1</u>

\displaystyle 3. \hspace{0.3 cm}  \mathbf{ 10^{-9}} =  \underline{ \frac{1}{10^9}}

4. 5·(x·y)⁰ = 5 × x⁰ × y⁰ = 5 × 1 × 1 = <u>5</u>

5. 0¹⁵ = <u>0</u>

\displaystyle 6. \hspace{0.3 cm}  \mathbf{\frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4}} = \frac{ 4 \times 6 \times x^5 \times x^3 \times y^4}{6 \times x^5 \times y^4} = \underline{4 \cdot x^3}

\displaystyle 7. \hspace{0.3 cm}  \mathbf{\left(\frac{5 \cdot x^0}{y} \right)^{-1} }= \frac{1}{\frac{5 \times 1}{y} } = \underline{\frac{y}{5}}

8. \hspace{0.3 cm}\displaystyle  \mathbf{\frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}}  = 10 \cdot a^{5 - (-2)} \cdot  b^{6 - 0}  \cdot c^{-5 -2} = \underline{\frac{10 \cdot a^7  \cdot b^6}{c^7}}

\displaystyle 9. \hspace{0.3 cm}  \mathbf{\frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}}  = y^{-5} \cdot z^{-2} = \underline{\frac{1}{y^{5} \cdot z^2}}

\displaystyle 10. \hspace{0.3 cm} \mathbf{\left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2}} = \left(\frac{1}{10} \right)^{-2} = \frac{1}{\left(\frac{1}{10} \right)^2 } = \frac{1}{\frac{1}{100} } = \underline{100}

11. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{(a \cdot b)}{9} \right)^{-1}} = \frac{1}{\left(\frac{(a \cdot b)}{9} \right) }  = \underline{\frac{9}{a \cdot b}}

\displaystyle 12. \hspace{0.3 cm} \mathbf{\frac{9}{x^{-2}}}  = \frac{9}{\frac{1}{x^2} }  = \underline{9 \cdot x^2}

13. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{12 \cdot b^{-3}}{a^{-4}}}  = 12 \cdot \frac{b^{-3}}{a^{-4}} =12 \cdot \frac{1}{\frac{b^3}{a^4} }  = 12 \cdot \frac{a^4}{b^3}  = \underline{\frac{12 \cdot a^4}{b^3}}

14. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{1}{a^{-5 \cdot n}}}  = \frac{1}{\frac{1}{a^{5 \cdot n}} } = \underline{a^{5 \cdot n}}

15. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{1}{2} \right)^{-5}} = \frac{1}{\left(\frac{1}{2}  \right)^5}  = 2^5 = \underline{32}

Learn more about the laws of indices here:

brainly.com/question/8959311

6 0
2 years ago
Which number is an element if the range of the equation y=3x+2 for the domain of (-3, 4, 6)?
LUCKY_DIMON [66]
It’s A I’m pretty sure so yeah that’s the answer I hope this helps
3 0
3 years ago
Charlene made the sketch below in order to find the height x of a pole. She positioned a mirror on the ground so that she could
mihalych1998 [28]
I belive the answer is C  hope it helps
6 0
4 years ago
Read 2 more answers
Other questions:
  • Solve for n. <br> n<br> ------------ = -2<br> n-12.168
    9·1 answer
  • Please help asap. i need it by today or tomorrow.
    15·1 answer
  • I added a screenshot of my question
    5·1 answer
  • Verify that (1+cos2theta)/(costheta)=2costheta is an identity.
    8·1 answer
  • Rounds 9,820 to the thousand
    13·2 answers
  • Pleaseeeeee show the work
    5·1 answer
  • Help me 20 points, please
    12·1 answer
  • Whats is - 4x + 18 &gt; 2x+12 put into interval notation ?
    14·2 answers
  • One of the tables shows a proportional relationship.
    11·1 answer
  • How many numbers of possible live card hands (hands in five-card poker) drawn without replacement from a standard deck of 52 pla
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!