Answer :Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
Step-by-step explanation:
Considering the quadrilateral with vertices
d(0,0)
i(5,5)
n(8,4)
g(7,1)
Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
From the figure a, it is clear that the quadrilateral has
Two pairs of sides
Each pair having two equal-length sides which are adjacent
The angles being equal where the two pairs meet
Diagonals as shown in dashed lines cross at right angles, and one of the diagonals does bisect the other - cuts equally in half
Please check the attached figure a.
Answer:
The value of "x" is 34 and the value of "y" is 17.
Step-by-step explanation:
"x" is shown as 34 and "y" is shown on the rectangular shape in the number form of 17. If your trying to find the area of the rectangle the area is 578.
Answer:
b(-10) = 6
Step-by-step explanation:
Step 1: Define
b(x) = |x + 4|
b(-10) is x = -10
Step 2: Substitute and Evaluate
b(-10) = |-10 + 4|
b(-10) = |-6|
b(-10) = 6
Answer:
The perimeter of the base of the birdhouse is 36 units
Step-by-step explanation:
<u><em>The complete question is</em></u>
Chase is building a birdhouse in the shape of a regular polygon. He knows that the measure of the interior angle is twice the measure of the exterior angle and the length of a diagonal that passes through the center is 12. What is the perimeter of the base of the birdhouse?
step 1
Find the measure of the interior angle
Let
x ---> the measure of the interior angle
y ---> the measure of the exterior angle
Remember that
the sum of the interior and exterior angle in any polygon is equal to 180 degrees
so
----> equation A
we have that
the measure of the interior angle is twice the measure of the exterior angle
so
----> equation B
substitute equation B in equation A


so

That means-----> The figure is a regular hexagon
step 2
Remember that
The length of the diagonal that passes through the center of the hexagon is equal to two times the length of the regular hexagon
Let
b ----> the length side of the hexagon
so

The perimeter of the hexagon is given by the formula

substitute
