Given: line segment AB // to line segment CD, ∠B ≅∠D and line segment BF ≅ to line segment ED. Prove: Δ ABF ≅ Δ CED.
Follow the matching numbers on the statement versus reason chart.
Statement:
1. line segment AB // to line segment CD.
2. ∠B ≅∠D
3. line segment BF ≅ to line segment ED.
4. ∠A ≅∠C
5. Δ ABF ≅ Δ CED
Reason:
1. Given
2. Given
3. Given
4. Alternate interior angles are congruent.
5. Corresponding parts of congruent triangles are congruent.
Answer:
22.078
Step-by-step explanation:
I have attached the images above
Given that a polynomial function P(x) has rational coefficients.
Two roots are already given which are i and 7+8i,
Now we have to find two additional roots of P(x)=0
Given roots i and 7+8i are complex roots and we know that complex roots always occur in conjugate pairs so that means conjugate of given roots will also be the roots.
conjugate of a+bi is given by a-bi
So using that logic, conjugate of i is i
also conjugate of 7+8i is 7-8i
Hence final answer for the remaining roots are (-i) and (7-8i).
Answer:
m=0
Step-by-step explanation:
<em><u>mx²+2x-1=0</u></em>
if x=1/2 then
m(1/2)² +2(1/2)-1=0
m/4+1-1=0
m/4=0
m=0