I think that the sum will always be a rational number
let's prove that
<span>any rational number can be represented as a/b where a and b are integers and b≠0
</span>and an integer is the counting numbers plus their negatives and 0
so like -4,-3,-2,-1,0,1,2,3,4....
<span>so, 2 rational numbers can be represented as
</span>a/b and c/d (where a,b,c,d are all integers and b≠0 and d≠0)
their sum is
a/b+c/d=
ad/bd+bc/bd=
(ad+bc)/bd
1. the numerator and denominator will be integers
2. that the denominator does not equal 0
alright
1.
we started with that they are all integers
ab+bc=?
if we multiply any 2 integers, we get an integer
<span>like 3*4=12 or -3*4=-12 or -3*-4=12, etc.
</span>even 0*4=0, that's an integer
the sum of any 2 integers is an integer
like 4+3=7, 3+(-4)=-1, 3+0=3, etc.
so we have established that the numerator is an integer
now the denominator
that is just a product of 2 integers so it is an integer
<span>2. we originally defined that b≠0 and d≠0 so we're good
</span>therefore, the sum of any 2 rational numbers will always be a rational number <span>is the correct answer.</span>
Answer:
Monica is not correct.
Step-by-step explanation:
First of all, if 4 bottles only cost $4, then how would only 2 cost more? (She said the two bottles would be $25, which doesn’t make sense.)
Vertical angles are congruent due to the fact that they intersect. If they did not, they would in fact be parallel. (last section)
Answer:
The answer is 33.
Step-by-step explanation:
4x^2 + 13 - 2y, x=3 y=8
In order to evaluate this, you just need to plug the x and y in the expression:
= 4(3)^2 + 13 - 2(8)
= 4(9) + 13 - 16
= 36 + 13 - 16
= 33
Answer:
b. the area to the right of 2
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X, which is also the area to the left of Z. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X, which is the area to the right of Z.
In this problem:




Percentage who did better:
P(Z > 2), which is the area to the right of 2.