Answer:
8x less than or equal to $50
Step-by-step explanation:
bc the x represents the amount of books you can get for 8 dollars per book and can be less than or equal to, but not greater than 50, the max amount you may spend
hope this helped :)
If a system has no solution, it is said to be inconsistent . The graphs of the lines do not intersect, so the graphs are parallel and there is no solution.
5) The relation between intensity and current appears linear for intensity of 300 or more (current = intensity/10). For intensity of 150, current is less than that linear relation would predict. This seems to support the notion that current will go to zero for zero intensity. Current might even be negative for zero intensity since the line through the points (300, 30) and (150, 10) will have a negative intercept (-10) when current is zero.
Usually, we expect no output from a power-translating device when there is no input, so we expect current = 0 when intensity = 0.
6) We have no reason to believe the linear relation will not continue to hold for values of intensity near those already shown. We expect the current to be 100 for in intensity of 1000.
8) Apparently, times were only measured for 1, 3, 6, 8, and 12 laps. The author of the graph did not want to extrapolate beyond the data collected--a reasonable choice.
Answer:
No, because as the x-values are increasing by a constant amount, the y-values are not being multiplied by a constant amount.
Step-by-step explanation:
We have a set of ordered pairs of the form (x, y)
If a function is exponential then the ratio between the consecutive values of y, is always equal to a constant.
This means that:
\frac{y_2}{y_1}=\frac{y_3}{y_2}=\frac{y_4}{y_3}=by1y2=y2y3=y3y4=b
This is: y_2=by_1y2=by1
Now we have this set of points {(-1, -5), (0, -3), (1, -1), (2, 1)}
Observe that:
\begin{gathered}\frac{y_2}{y_1}=\frac{-3}{-5}=\frac{3}{5}\\\\\frac{y_3}{y_2}=\frac{-1}{-3}=\frac{1}{3}\\\\\frac{3}{5}\neq \frac{1}{3}\end{gathered}y1y2=−5−3=53y2y3=−3−1=3153=31
Then the values of y are not multiplied by a constant amount "b"
Answer:
Where is M??
Step-by-step explanation: