14 because you count the height and how much the base is from the farthest point left to right and multiply h=2 b=7 therefor 2x7 is 14
Answer:
The points for the given two linear equation as
= - 2 , - 6
= - 2 , 6
The graph so plotted as shown
Step-by-step explanation:
Given as :
The two linear equation are
y = 3 x ........A and
y = - x - 8 .........B
Solving equation A and B
Now, Put The value of y from eq A into eq B
So, 3 x = - x - 8
Or, 3 x + x = - 8
Or, 4 x = - 8
∴ x = 
I.e x = - 2
Now , Put the value of x into eq A
∵ y = 3 x
∴ y = 3 × (-2)
I.e y = - 6
Again, Put the value of x into eq B
∵ y = - x - 8
∴ y = - 2 - (-8)
I.e y = 6
So, for x = - 2 , y = - 6
And for x = - 2 , y = 6
Hence , The points for the given two linear equation as
= - 2 , - 6
= - 2 , 6
The graph so plotted as shown . Answer
Answer:
23
Step-by-step explanation:
i think
Answer:
π/8 radians
Step-by-step explanation:
THIS IS THE COMPLETE QUESTION
In 1 h the minute hand on a clock moves through a complete circle, and the hour hand moves through 1 12 of a circle. Through how many radians do the minute hand and the hour hand move between 1:00 p.m. and 1:45 p.m. (on the same day)?
SOLUTION
✓If the minute hand on a clock moves through complete circle in 1 hour, then it means that it goes through a circle and angle of circle in radians is 2π.
Between 1:00 p.m. and 1:45pm in the same day we have 45 minutes i.e (1.45 pm -1pm)
Within the 1hour minutes, the hand can move with complete cycle of 2π radians
Then At time t= 45minutes
Angle through the circle at 45 minutes= 45/60 ×2π radians
= 3π/2 radians
And if the hour hand goes through a complete cycle 1/12 as told in the question we have 1/2 × 2π radians
For t=45 minutes
Then 1/12 × 2π ×45/60
= π/8 radians
Hence, the minute hand and the hour hand move π/8 radians between 1:00 p.m. and 1:45 p.m.