1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
14

If (x +yi) +6=2 , what is x+yi?

Mathematics
1 answer:
Helga [31]3 years ago
7 0

Answer:

-4

Step-by-step explanation:

You can think about it this way: What number do I subtract from 6 to get 2.

You might be interested in
jane is going to walk once around the edge of a rectangular park . the park is 150 yards long and 200 feet wide . how far will j
katrin [286]
Jane Will Walk 700 Yards Long
4 0
3 years ago
There are 24 cupcakes that I give to some scholars, I give each scholar 4 muffins. How many scholars received muffins?
motikmotik

Answer:

6 scholars

Step-by-step explanation:

24/4=6

7 0
4 years ago
Read 2 more answers
Use Euler's method to obtain a four-decimal approximation of the indicated value. First use h = 0.1 and then use h = 0.05. Find
Ghella [55]

Answer:

y(1) = 2.5937424601 by using h = 0.1

y(1)=2.65329770514442 by using h = 0.05

Explicit solution - y = e^{x}

Step-by-step explanation:

Euler's Method -  yₙ₊₁=yₙ+h⋅f(tₙ,yₙ), where tₙ₊₁=tₙ+h.

We have that h=0.1 , t₀=0, y₀=1, f(t,y)=y

Step 1 -

t₁=t₀+h=0+0.1=0.1

y(t₁)=y(0.1)=y₁=y₀+h⋅f(t₀,y₀)

                    =1+h⋅f(0,1)

                    =1+(0.1)⋅(1.0)

                     =1.1

Step 2.-

t₂=t₁+h=0.1+0.1=0.2

y(t₂)=y(0.2)=y₂=y₁+h⋅f(t₁,y₁)

                      =1.1+h⋅f(0.1,1.1)

                      =1.1+(0.1)⋅(1.1)

                      =1.21

Step 3-

t₃=t₂+h=0.2+0.1=0.3

y(t₃)=y(0.3)=y₃=y₂+h⋅f(t₂,y₂)

                      =1.21+h⋅f(0.2,1.21)

                      =1.21+(0.1)⋅(1.21)

                      =1.331

Step 4 -

t₄=t₃+h=0.3+0.1=0.4

y(t₄)=y(0.4)=y₄=y₃+h⋅f(t₃,y₃)

                      =1.331+h⋅f(0.3,1.331)

                      =1.331+(0.1)⋅(1.331)

                      =1.4641

Step 5.-

t₅=t₄+h=0.4+0.1=0.5

y(t₅)=y(0.5)=y₅=y₄+h⋅f(t₄,y₄)

                      =1.4641+h⋅f(0.5,1.4641)

                      =1.4641+(0.1)⋅(1.4641)

                      =1.61051

Step 6-

t₆=t₅+h=0.5+0.1=0.6

y(t₆)=y(0.6)=y₆=y₅+h⋅f(t₅,y₅)

                      =1.61051+h⋅f(0.5,1.61051)

                      =1.61051+(0.1)⋅(1.61051)

                      =1.771561

Step 7-

t₇=t₆+h=0.6+0.1=0.7

y(t₇)=y(0.7)=y₇=y₆+h⋅f(t₆,y₆)

                      =1.771561+h⋅f(0.6,1.771561)

                      =1.771561+(0.1)⋅(1.771561)

                      =1.9487171

Step 8-

t₈=t₇+h=0.7+0.1=0.8

y(t₈)=y(0.8)=y₈=y₇+h⋅f(t₇,y₇)

                      =1.9487171+h⋅f(0.7,1.9487171)

                      =1.9487171+(0.1)⋅(1.9487171)

                      =2.14358881

Step 9-

t₉=t₈+h=0.8+0.1=0.9

y(t₉)=y(0.9)=y₉=y₈+h⋅f(t₈,y₈)

                      =2.14358881+h⋅f(0.8,2.14358881)

                      =2.14358881+(0.1)⋅(2.14358881)

                      =2.357947691

Step 10.-

t₁₀=t₉+h=0.9+0.1=1.0

y(t₁₀)=y(1.0)=y₁₀=y₉+h⋅f(t₉,y₉)

                =2.357947691+h⋅f(0.9,2.357947691)

                =2.357947691+(0.1)⋅(2.357947691)

                =2.5937424601

∴ we get

y(1) = 2.5937424601 by using h = 0.1

same process goes with h = 0.05

we get y(1)=2.65329770514442

Now,

For the explicit solution  -

y' = y

⇒\frac{dy}{dx} = y

⇒\frac{dy}{y} = dx

By integrate, we get

∫\frac{dy}{y} = ∫dx

⇒ln(y) = x

⇒y = e^{x}

3 0
3 years ago
I need help with this!
ruslelena [56]
|12| ÷ 2 • |-5|
= 12 ÷ 2 • 5
= 6 • 5
= 30
Absolute values just make the number positive if it is negative. The number stays positive if it’s positive.
7 0
4 years ago
A taxi company charges passengers $2.00 for a ride, no matter how long the ride is, and an additional $0.20 for each mile travel
tiny-mole [99]

The answer will be $2.20. Because they only traveled one mile, which is 20 cents. Also the original cost before they even started driving was $2.00.

3 0
3 years ago
Other questions:
  • Moussa tried to subtract two polynomials. his work is shown below: \begin{aligned} &\phantom{=}(t^2+6t-3)-(7t^2-4t+1) \\\\ &
    13·2 answers
  • Can someone help me with #22
    5·1 answer
  • 4x=(cd)/(yz) solve for z
    7·1 answer
  • 3750 for 12 years at 6.5% compounded daily
    12·1 answer
  • 21 POINTS!<br><br> what is value of x?
    7·2 answers
  • Which best describes the discriminant of the functions whose
    14·1 answer
  • Drag each tile to the correct box. A data set that consists of many values can be summarized using the five-number summary. Arra
    6·1 answer
  • Which of the following could be the perimeter of a rectangle with an area of 16 square inches?
    12·2 answers
  • I REALLY NEED HELP WITH THIS QUESTION WITH STEPS
    12·1 answer
  • What do algebraic expressions and numeric expressions have in common
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!