
Step  1  :
simplify 

Equation at the end of step  1  :
15 (((3 • (x2)) - 4x) - ——) - 3 x 
Step  2  :
Equation at the end of step  2  :
15 ((3x2 - 4x) - ——) - 3 x 
Step  3  :
Rewriting the whole as an Equivalent Fraction :
 3.1   Subtracting a fraction from a whole 
Rewrite the whole as a fraction using  x  as the denominator :
3x2 - 4x (3x2 - 4x) • x 3x2 - 4x = ———————— = —————————————— 1 x 
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole 
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Step  4  :
Pulling out like terms :
 4.1     Pull out like factors :
   3x2 - 4x  =   x • (3x - 4) 
Adding fractions that have a common denominator :
 4.2       Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x • (3x-4) • x - (15) 3x3 - 4x2 - 15 ————————————————————— = —————————————— x x 
Equation at the end of step  4  :
(3x3 - 4x2 - 15) ———————————————— - 3 x 
Step  5  :
Rewriting the whole as an Equivalent Fraction :
 5.1   Subtracting a whole from a fraction 
Rewrite the whole as a fraction using  x  as the denominator :
3 3 • x 3 = — = ————— 1 x