34-12=22
the answer is:
If the outside is 34c and the inside is 12c then the answer is 22c, as you are taking off 12 from 34.
If you want it to be y=mx+b form then the equations should look like this: y=x+5 and y=-1/3x+1.
F = d + e + t Flip the sides to put t on the left
d + e + t = F Subtract d from both sides
e + t = F - d Subtract e from both sides
t = F - d - e
By applying the trigonometry ratio, SOH, the angle that the ladder makes with the building is calculated as: 17.5°
<em><u>Recall:</u></em>
- Trigonometry ratios that can be used to solve a right triangle are: SOH CAH TOA.
- SOH represents: sin ∅ = Opp/Hyp
- CAH represents: cos ∅ = Adj/Hyp
- TOA represents: tan ∅ = Opp/Adj
The diagram attached below depicts the problem given.
∅ = x
Opp = 15 ft
Hyp = 50 ft
- Thus, applying the trigonometry ratio, SOH, we have:
sin x = 15/50
x = 
x = 17.5°
In conclusion, by applying the trigonometry ratio, SOH, the angle that the ladder makes with the building is calculated as: 17.5°
Learn more about trigonometry ratio on:
brainly.com/question/4326804
We start with the expression at the left of the equation.
We can combine the terms as:
![\begin{gathered} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \\ \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%20%5C%5C%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5Cend%7Bgathered%7D)
We can now apply the distributive property for the both the numerator and denominator. We can see also that the denominator is the expansion of the difference of squares:
![\begin{gathered} \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2})^2-(\sqrt[]{2-\sqrt[]{3}}))^2} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})+(\sqrt[]{3}-2)\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{2^{}-(2-\sqrt[]{3})^{}} \\ \frac{\sqrt[]{2}\cdot(2+\sqrt[]{3})-\sqrt[]{2-\sqrt[]{3}}\cdot(2+\sqrt[]{3})+\sqrt[]{2}\cdot(\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}\cdot(\sqrt[]{3}-2)}{2-2+\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2+\sqrt[]{3}+\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}(-2-\sqrt[]{3}+\sqrt[]{3}-2)}{\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2\sqrt[]{3})+\sqrt[]{2-\sqrt[]{3}}(-4)}{\sqrt[]{3}} \\ 2\sqrt[]{2}-4\frac{\sqrt[]{2-\sqrt[]{3}}}{\sqrt[]{3}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%29%5E2-%28%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%29%5E2%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%2B%28%5Csqrt%5B%5D%7B3%7D-2%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B2%5E%7B%7D-%282-%5Csqrt%5B%5D%7B3%7D%29%5E%7B%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B2-2%2B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%2B%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-2-%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-4%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%202%5Csqrt%5B%5D%7B2%7D-4%5Cfrac%7B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5Cend%7Bgathered%7D)
We then can continue rearranging this as: