Answer:
Burning coal
Explanation:
The emissions of carbon dioxide would reduce because then they will consume less gasoline. Instead of coal burning, this would reduce the overall concentrations of greenhouse gas emissions and generate energy from wind.
Answer:
From least to most energetically favorable, the reactions are:
Glucose to Glucose-6-P (least) ; Glucose-6-P to Fructose-6-P; ATP to ADP and Pi; PEP to pyruvate (most favorable)
Explanation:
ΔG represents the free energy change that occurs during a chemical reaction. A reaction with negative free energy change is exergonic and spontaneous. Negative free energy change represents the fact that reactants have more free energy than products. The excess of the energy is released during the reaction and makes it a spontaneous process.
q`On the other hand, a reaction with positive free energy change is endothermic and non-spontaneous. These thermodynamically unfavorable reactions are coupled with other exergonic reactions to make them occur.
Among the given example, PEP to pyruvate has the highest negative free energy change (−14.8 kcal/mol) and therefore, is energetically most favorable. On the other hand, "Glucose to Glucose-6-P" has the highest positive free energy charge (+3.3 kcal/mol) making it energetically the most unfavorable reaction.
Answer: Hello :)
Explanation: Speciation and the three selections (directional, disruptive, and stabilizing) all affect biodiversity. ... The affects of this are the evolution of a new species, genetic variation, and an increase in biodiversity. Stabilizing selection is a process by which average individuals in a population are favored.
Q1. The answer is 1.
It can be calculated using the equation:
(1/2)ⁿ = x
x - decimal amount remaining,
n - a number of half-lives.
x = 50% = 50/100 = 0.5
n = ?
(1/2)ⁿ = 0.5
log((1/2)ⁿ) = log(0.5)
n * log(1/2) = log(0.5)
n * log(0.5) = log(0.5)
n = log(0.5)/log(0.5)
n = 1
Q10. The answer is 2.
It can be calculated using the equation:
(1/2)ⁿ = x
x - decimal amount remaining,
n - a number of half-lives.
Rhyolite #2 has 25% of the parent H remaining:
x = 25% = 25/100 = 0.25
n = ?
(1/2)ⁿ = 0.25
log((1/2)ⁿ) = log(0.25)
n * log(1/2) = log(0.25)
n * log(0.5) = log(0.25)
n = log(0.25)/log(0.5)
n = -0.602 / - 0.301
n = 2
Q3. The answer is 100 million years.
A number of half-lives (n) is a quotient of total time elapsed (t) and length of half-life (H):
n = t/H
n = 1
t = ?
H = 100 000 000 years
n = t/H
t = n * H
t = 1 * 100 000 000 years
t = 100 000 000 years<span>
</span>
A long carbon and hydrogen chain and a carboxyl group.
In images of fatty acids (the monomers of Lipids), it is depicted as a long carbon chain with hydrogen on the ends and connected to them as well, yet on the clear side is the carboxyl group.
Hope this helps!