The derivative of the function is 2x+6.
At the particular point (2,6), plug in the x coordinate for x.
2(2)+6 = 10
Hope this helps :)
Answer: 21
Step-by-step explanation: The amount the gold bar weighs is extra information and is meant to throw you off, 526/24 is 21.9 but because you can’t have a decimal amount of gold bars it’s just 21 in each pot.
Answer:
2.62
Step-by-step explanation:
![log_{b} \frac{b^{2}x^{\frac{5}{2} }}{\sqrt{y}}](https://tex.z-dn.net/?f=log_%7Bb%7D%20%5Cfrac%7Bb%5E%7B2%7Dx%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%7D%7B%5Csqrt%7By%7D%7D)
First, write the square root as exponent.
![log_{b} \frac{b^{2}x^{\frac{5}{2} }}{y^{\frac{1}{2}}}](https://tex.z-dn.net/?f=log_%7Bb%7D%20%5Cfrac%7Bb%5E%7B2%7Dx%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%7D%7By%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D)
Move the denominator to the numerator and negate the exponent.
![log_{b}(b^{2}x^{\frac{5}{2}}y^{-\frac{1}{2}})](https://tex.z-dn.net/?f=log_%7Bb%7D%28b%5E%7B2%7Dx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7Dy%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%29)
Use log product property.
![log_{b}(b^{2}) + log_{b}(x^{\frac{5}{2}}) + log_{b}(y^{-\frac{1}{2}})](https://tex.z-dn.net/?f=log_%7Bb%7D%28b%5E%7B2%7D%29%20%2B%20log_%7Bb%7D%28x%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%29%20%2B%20log_%7Bb%7D%28y%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%29)
Use log exponent property.
![2 log_{b}(b) + {\frac{5}{2}}log_{b}(x) - {\frac{1}{2}}log_{b}(y)](https://tex.z-dn.net/?f=2%20log_%7Bb%7D%28b%29%20%2B%20%7B%5Cfrac%7B5%7D%7B2%7D%7Dlog_%7Bb%7D%28x%29%20-%20%7B%5Cfrac%7B1%7D%7B2%7D%7Dlog_%7Bb%7D%28y%29)
Substitute values.
![2(1) + \frac{5}{2}(0.36) - \frac{1}{2}(0.56) \\2.62](https://tex.z-dn.net/?f=2%281%29%20%2B%20%5Cfrac%7B5%7D%7B2%7D%280.36%29%20-%20%5Cfrac%7B1%7D%7B2%7D%280.56%29%20%5C%5C2.62)
When the ball hit the ground, the height of the ball will be zero. So using the value of h(x) as zero in the given equation, we can find the time in which the ball will hit the ground.
This means the ball will hit the ground 6 seconds after Amir threw it
im am pretty sure it is b.sometimes because an equation can have more then one answer