Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
<h3>How to determine how many bead of each type of bracelets and necklaces should Christy make to maximize his profit?</h3>
The given parameters can be represented in the following tabular form:
Bracelet (x) Necklace (y) Total
Labor (hour) 0.5 0.75 40
Profit 10 18
From the above table, we have the following:
Objective function:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
Because she wants to make at least 30 bracelets, we have:
x >= 30
So, we have:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
x >= 30
Express x >= 30 as equation
x = 30
Substitute x = 30 in 0.5x + 0.75y <= 40
0.5 * 30 + 0.75y <= 40
This gives
15 + 0.75y <= 40
Subtract 15 from both sides
0.75y <= 30
Divide by 0.75
y <= 40
Hence, Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
Read more about maximizing profits at:
brainly.com/question/13799721
#SPJ1
Answer:
$147.80
Step-by-step explanation:
140 x .0557 = 7.80 Tax
Add tax to price
140 + 7.80 = $147.80
Splitting up the interval [0, 6] into 6 subintervals means we have
![[0,1]\cup[1,2]\cup[2,3]\cup\cdots\cup[5,6]](https://tex.z-dn.net/?f=%5B0%2C1%5D%5Ccup%5B1%2C2%5D%5Ccup%5B2%2C3%5D%5Ccup%5Ccdots%5Ccup%5B5%2C6%5D)
and the respective midpoints are

. We can write these sequentially as

where

.
So the integral is approximately

Recall that



so our sum becomes

Answer:
Choice D.
Step-by-step explanation:
The range is the set of all y-coordinates of the points in the graph.
The graph is a wavy function that has a maximum y-coordinate of 1 and a minimum y-coordinate of -1. The y-coordinates can also be all numbers between -1 and 1. Choice A. is only the two numbers -1 and 1. That is not correct since the range comprises the numbers -1, 1, and all numbers in between -1 and 1.
Answer: Choice D.