Answer:
possible maximum and minimum values : f (1,1), f (-1,-1)
Step-by-step explanation:
Given function :
f(x,y) = x^2 + y^2
constraint = xy = 1
attached below is the detailed solution of the method of using Lagrange method of Multipliers to find the maximum and minimum values of the function
Answer:
9262
Step-by-step explanation:
just plug in 22 for n and calculate
Hey there!!
Equation given :
A = h ( a + b ) / 2
Multiply by 2 on both sides
2A = h ( a + b )
Divide by h on both sides
2A / h = a + b
Subtract by b on both sides
2A / h - ( b ) = a
Hence, the option ( a ) is the correct answer
Hope my answer helps!

<h2>
<u>hope</u><u> </u><u>it</u><u> </u><u>helps</u><u> </u><u>you</u><u> </u><u>❣❣</u><u> </u></h2>
<h2>
<em><u>Mark</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>brainliest</u></em></h2>
<em><u>in</u></em><em><u> </u></em><em><u>fraction</u></em><em><u>=</u></em><em><u>29</u></em><em><u>/</u></em><em><u>15</u></em><em><u>0</u></em>
Eight times two equals sixteen.
two times eight equals sixteen.
four times four equals sixteen.
sixteen times one equals sixteen.
one times sixteen equals sixteen.
eight plus eight equals sixteen