Answer:
The smallest possible value of a+b+c+d is: 4
Step-by-step explanation:
since we are given that:
4a - 13 = 6b + 35 = 8c -17 = d
<em>on taking the first two equality i.e. 4a-13=6b+35</em>
we get ![b=\dfrac{2}{3}a-8](https://tex.z-dn.net/?f=b%3D%5Cdfrac%7B2%7D%7B3%7Da-8)
<em>on using the first and third equality we have:</em>
4a-13=8c-17
![c=\dfrac{1}{2}a+\dfrac{1}{2}](https://tex.z-dn.net/?f=c%3D%5Cdfrac%7B1%7D%7B2%7Da%2B%5Cdfrac%7B1%7D%7B2%7D)
<em>also from the first and last equality we have:</em>
d=4a-13
Hence,
![a+b+c+d=a+\dfrac{2}{3}a-8+\dfrac{1}{2}a+\dfrac{1}{2}+4a-13\\\\a+b+c+d=\dfrac{37a}{6}-\dfrac{41}{2}](https://tex.z-dn.net/?f=a%2Bb%2Bc%2Bd%3Da%2B%5Cdfrac%7B2%7D%7B3%7Da-8%2B%5Cdfrac%7B1%7D%7B2%7Da%2B%5Cdfrac%7B1%7D%7B2%7D%2B4a-13%5C%5C%5C%5Ca%2Bb%2Bc%2Bd%3D%5Cdfrac%7B37a%7D%7B6%7D-%5Cdfrac%7B41%7D%7B2%7D)
![a+b+c+d=\dfrac{37a-123}{6}](https://tex.z-dn.net/?f=a%2Bb%2Bc%2Bd%3D%5Cdfrac%7B37a-123%7D%7B6%7D)
the smallest possible value such that the expression a+b+c+d is positive will be claculated as:
a+b+c+d>0
that means ![\dfrac{37a-123}{6}>0](https://tex.z-dn.net/?f=%5Cdfrac%7B37a-123%7D%7B6%7D%3E0)
![a>3.324](https://tex.z-dn.net/?f=a%3E3.324)
But as a is an integer, hence the smallest such value is 4.