Answer:
A) 0.005
B) 0.001
C)0.0495
Step-by-step explanation:
Let A be the event that an aircraft is present and let B be the event the radar registers its presence.. Thus;
P(A) = Probability that an aircraft is present
P(A') = Probability that an aircraft is not present
P(B) = Probability that the radar generates an alarm
P(B') = Probability that the radar doesn't generate an alarm
Thus from what we are given, we have;
P(A) = 0.05
P(A') = 0.95
P(B) = 0.99
P(B') = 0.01
P(B|A') = 0.1
A) Probability of a false alarm will be;
P(A' ∩ B) = P(A) × P(B|A')
P(A' ∩ B) = 0.05 × 0.1 = 0.005
B) probability of missed detection is;
0.1 × (1 - 0.99) = 0.001
C) probability that an aircraft is present given that the radar registers a presence will be;
P(A ∩ B) = P(A) × P(B)
P(A ∩ B) = 0.05 × 0.99
P(A ∩ B) = 0.0495
Answer:
x coordinate B
Step-by-step explanation:
cos is always x coordinates, and it is a 3pi/4 rotation
Answer:
Homie you didnt post a picture, post another question so I can properly answer your question
Step-by-step explanation:
Answer:
see explanation
Step-by-step explanation:
A translation of 6 units to the right, means adding 6 to the x- coordinate.
J (- 4, 5 ) → J' (- 4 + 6, 5 ) → J' (2, 5 )
K (- 2, 1 ) → K' (- 2 + 6, 1 ) → K' (4, 1 )
L (- 4, 2 ) → L' (- 4 + 6, 2 ) → L' (2, 2 )
Answer:
x=3
Step-by-step explanation:
4(6x-7) = 44
6x - 7 = 11
6x = 18
x= 3