Answer:
μ ≈ 2.33
σ ≈ 1.25
Step-by-step explanation:
Each person has equal probability of ⅓.
![\left[\begin{array}{cc}X&P(X)\\1&\frac{1}{3}\\2&\frac{1}{3}\\4&\frac{1}{3}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DX%26P%28X%29%5C%5C1%26%5Cfrac%7B1%7D%7B3%7D%5C%5C2%26%5Cfrac%7B1%7D%7B3%7D%5C%5C4%26%5Cfrac%7B1%7D%7B3%7D%5Cend%7Barray%7D%5Cright%5D)
The mean is the expected value:
μ = E(X) = ∑ X P(X)
μ = (1) (⅓) + (2) (⅓) + (4) (⅓)
μ = ⁷/₃
The standard deviation is:
σ² = ∑ (X−μ)² P(X)
σ² = (1 − ⁷/₃)² (⅓) + (2 − ⁷/₃)² (⅓) + (4 − ⁷/₃)² (⅓)
σ² = ¹⁴/₉
σ ≈ 1.25
Answer:
14b
Step-by-step explanation:
2 * 7b
2*7 b
14b
Answer:
(2,11)
Step-by-step explanation:
f(x) = 5*2 + 1 = 11
g(x) = -2 *2 + 15 = 11
Answer:
77.5 m/s
Step-by-step explanation:
Once the ball is dropped from the height, it converts all its potential energy into kinetic energy:

Using this equation, and the data we have to find the velocity of the ball:


Answer:the heck
Step-by-step explanation:
the heck