-- To play the six games, <span>Santiago Diaz Granados spent
(6 x 25) = 150 tokens.
-- As a result of his skill, experience, talent, steady hand, nerves
of steel, superior hand-eye coordination, and superb reflexes, </span><span>
Santiago Diaz Granados won</span>
(0 + 10 + 50 + 0 + 5 + 10) = 75 tokens.
-- At the end of the 6th game, <span>Santiago Diaz Granados was behind
the curve.
After spending 150 tokens and winning 75 tokens, </span><span>Santiago Diaz Granados
was down by (150 - 75) = 75 tokens since he arrived at the arcade.
Any true friend could look at the choices, could see that choice-B is
the correct one, and could advise </span><span>Santiago Diaz Granados to cash in
whatever he had left, accept his losses, return to his home, and live
to fight another day.
Viva </span><span>Santiago Diaz Granados ... </span><span>un verdadero héroe de su pueblo. Viva !</span>
Answer:
V = (1/3)pi(r^2)h (the first one)
Answer: 7 years
Step-by-step explanation:
Given the formula for simple interest as
Principal × Rate × Time
To find Time is therefore 100 × Interest/ Principal x Rate
From the above question,
Principal is given as 600;
Interest is 294 and
Rate is 7%
Slot the values into the formula:
100 × 294/ 600 x 7
= 29400/4200
=7
Therefore, Time (T) is 7 years
I hope this is clear, please mark as brainliest
Answer:
V = 8.06 cubed units
Step-by-step explanation:
You have the following curves:

In order to calculate the solid of revolution bounded by the previous curves and the x axis, you use the following formula:
(1)
To determine the limits of the integral you equal both curves f=g and solve for x:

Then, the limits are a = -1 and b = 1
You replace f(x), g(x), a and b in the equation (1):
![V=\pi \int_{-1}^{1}[(\frac{13}{9}-x^2)^2-(\frac{4}{9}x^2)^2]dx\\\\V=\pi \int_{-1}^1[\frac{169}{81}-\frac{26}{9}x^2+x^4-\frac{16}{81}x^4]dx\\\\V=\pi \int_{-1}^1 [\frac{169}{81}-\frac{26}{9}x^2+\frac{65}{81}x^4]dx\\\\V=\pi [\frac{169}{81}x-\frac{26}{27}x^3+\frac{65}{405}x^5]_{-1}^1\\\\V\approx8.06\ cubed\ units](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7B-1%7D%5E%7B1%7D%5B%28%5Cfrac%7B13%7D%7B9%7D-x%5E2%29%5E2-%28%5Cfrac%7B4%7D%7B9%7Dx%5E2%29%5E2%5Ddx%5C%5C%5C%5CV%3D%5Cpi%20%5Cint_%7B-1%7D%5E1%5B%5Cfrac%7B169%7D%7B81%7D-%5Cfrac%7B26%7D%7B9%7Dx%5E2%2Bx%5E4-%5Cfrac%7B16%7D%7B81%7Dx%5E4%5Ddx%5C%5C%5C%5CV%3D%5Cpi%20%5Cint_%7B-1%7D%5E1%20%5B%5Cfrac%7B169%7D%7B81%7D-%5Cfrac%7B26%7D%7B9%7Dx%5E2%2B%5Cfrac%7B65%7D%7B81%7Dx%5E4%5Ddx%5C%5C%5C%5CV%3D%5Cpi%20%5B%5Cfrac%7B169%7D%7B81%7Dx-%5Cfrac%7B26%7D%7B27%7Dx%5E3%2B%5Cfrac%7B65%7D%7B405%7Dx%5E5%5D_%7B-1%7D%5E1%5C%5C%5C%5CV%5Capprox8.06%5C%20cubed%5C%20units)
The volume of the solid of revolution is approximately 8.06 cubed units
Answer:
I belive the answer is D.
Step-by-step explanation:
I hope this helped.:)