Answer:
9.333333 (repeating decimal)
Answer:
Step-by-step explanation:
There’s no equal sign.
Answer:
Population in 2100 is 17.99 billion.
Step-by-step explanation:
The population of the world in 2020 = 7.8 billion.
The growth rate = 1.05%
Now find the population after 2100. Use the below formula to find the population.
Population in 2100 = Population of 2020 (1 + growth rate)^n
Population in 2100 = 7.8 (1 + 0.0105)^80
Population in 2100 = 17.99 billions.
Now, find the growth rate in 2100.
dN/dt = [r N (K – N) ] / K
r = Malthusian parameter
K = carrying capacity.
Now divide both sides by K, now x = N/K then do the differential equation.
dx/dt = r x ( 1- x)
Now integrate, x(t) = 1/ [ 1 + (1/x – 1) c^-rt
From the first equation = dN/dt = (13 – 7.8) / 80 = (r × 7.8×(13 – 7.8) / 12
0.065 = (r × 7.8× 5.2) / 12
0.065 = r × 3.38
r = 1.92%
- the type of pair is vertical angle.
- to find x:
-- vertical angles are equal.
4x + 10 = 5x - 1
10 = x - 1
x = 11
Because it accurately depicts the distribution of values for many natural occurrences, it is the most significant probability distribution in statistics.
The most significant probability distribution in statistics for independent, random variables is the normal distribution, sometimes referred to as the Gaussian distribution. In statistical reports, its well-known bell-shaped curve is generally recognized.
The majority of the observations are centered around the middle peak of the normal distribution, which is a continuous probability distribution that is symmetrical around its mean. The probabilities for values that are farther from the mean taper off equally in both directions. Extreme values in the distribution's two tails are likewise rare. Not all symmetrical distributions are normal, even though the normal distribution is symmetrical. The Student's t, Cauchy, and logistic distributions, for instance, are all symmetric.
The normal distribution defines how a variable's values are distributed, just like any probability distribution does. Because it accurately depicts the distribution of values for many natural occurrences, it is the most significant probability distribution in statistics. Normal distributions are widely used to describe characteristics that are the sum of numerous distinct processes. For instance, the normal distribution is observed for heights, blood pressure, measurement error, and IQ scores.
Learn more about probability distribution here:
brainly.com/question/28021875
#SPJ9