For the answer to the question above,
<span>a) Use F = k * q1 * q2 / d²
where k = 8.99e9 N·m²/C²
and q1 = -1.602e-19 C (electron)
and q2 = 1.602e-19 C (proton)
and d = distance between point charges = 0.53e-10 m
The negative result indicates "attraction".
b) Here, just use F = ma
where F was found above, and
m = mass of electron = 9.11e-31kg, if memory serves
a = radial acceleration
c) Now use a = v² / r
where a was found above
and r was given
d) period T = 2π / ω = 2πr / v
where v was found above
and r was given </span>
Answer:
25.6 units
Step-by-step explanation:
From the figure we can infer that our triangle has vertices A = (-5, 4), B = (1, 4), and C = (3, -4).
First thing we are doing is find the lengths of AB, BC, and AC using the distance formula:

where
are the coordinates of the first point
are the coordinates of the second point
- For AB:
![d=\sqrt{[1-(-5)]^{2}+(4-4)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B1-%28-5%29%5D%5E%7B2%7D%2B%284-4%29%5E2%7D)



- For BC:





- For AC:
![d=\sqrt{[3-(-5)]^{2} +(-4-4)^{2}}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B3-%28-5%29%5D%5E%7B2%7D%20%2B%28-4-4%29%5E%7B2%7D%7D)





Next, now that we have our lengths, we can add them to find the perimeter of our triangle:




We can conclude that the perimeter of the triangle shown in the figure is 25.6 units.
The answer is x=6 and y=4.
6+4=10
and 8 times 6 + 12 times 4 is 96.
Y = 1/3x - 2.
If you sub in 0, you’ll get (0, -2) which is the y intercept.