Question (1):The general formula of the quadratic equation is:
ax² + bx + c = 0
The given equation is:
5x² + 9x = 4
Rearrange the given equation to look the standard one:
5x² + 9x - 4 = 0
Now, compare the coefficients in the given equation with the standard one, you will find that:
a = 5, b = 9 and c = -4
Question (2):The given expression is:
-5 + 2x²<span> = -6x
</span>Rearrange this expression to be in standard form:
2x² + 6x - 5 = 0
This means that:
a = 2
b = 6
c = -5
The roots of the equation can be found using the formula in the attached image.
Substituting in this formula with the given a, b and c, we would find that the correct choice is third one (I have attached the correct choice)
Question (3):Quadratic formula (the one used in the previous question, also shown in attached images) is the best method to get the solution of any quadratic equation. This is because, putting the equation in standard form, we can simply get the values of a, b and c, substitute in the formula and get the precise solutions of the equation.
Hope this helps :)
A copy of a line segment will have the same measure or length as the segment.
The true statement is (4) They are congruent.
From the question, we understand that a copy of the line segment is created.
This means that the new segment has the exact property as the original line segment.
Hence, both lines are congruent, and the true statement is (d)
Read more about line segments at:
brainly.com/question/3573606
Answer:
A sample of 1068 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.03 for the estimation of a population proportion?
We need a sample of n.
n is found when M = 0.03.
We have no prior estimate of
, so we use the worst case scenario, which is 
Then






Rounding up
A sample of 1068 is needed.
The answer is C . cube 2
Explanation:
Using PEMDAS its Parentheses, exponents ,multiple then divide and add , subtract