Answer: Holds Genetic Information
Explanation:
Answer:
Hypotheis:
<em>If high amounts of product in the samples, '+++' , correlates with optimal temperatures and pH for enzyme activity, then...</em>
- <u>A- Pepsin</u>
- <u>B- Amylase </u>
- <u> C- thermophilic enzyme</u>
Explanation:
Enzymes are specialized proteins that function as biological catalysts- <u>they speed up chemical reactions.</u> As proteins, these are susceptible to changes in temperature and pH- they function best at optimal values for both conditions, but can be denatured, rendering them inactive at relative extremes.
Each enzyme provided has its own optimal temperature and pH values.
- Thermophilic enzymes are usually found in regions characterized by high temperatures. They show high thermostability, and do not become denatured at high temperatures- they thrive, and do not function well at lower temperatures.
- Amylase is a hydrolase digestive enzyme found in the mouth, that acts on polysaccharides like starch to break 1,4 glycosidic bonds between glucose molecules. It works best at a physiological (neutral) pH and temperatures (around 37°)
- Pepsin, another digestive enzyme, is a peptidase that breaks down proteins into peptide molecules. It is found in the stomach lining, where the pH is typically low i.e. acidic due to the hydrochloric acid in digestive juices.
Thus from the table A- pepsin, B- Amylase and C- thermophilic enzyme can be hypothesized.
They are different because they use different frequency
Answer:
what differences do you observe in the syringe or its contents before the air was pumping into the syringe and after?
Explanation:
When an air bubble enters a vein, it's called a venous air embolism. When an air bubble enters an artery, it's called an arterial air embolism. These air bubbles can travel to your brain, heart, or lungs and cause a heart attack, stroke, or respiratory failure.You can compress it, or squeeze it into a smaller volume. When you push on the plunger you can feel the air pushing back. When you stop pushing, the air inside the syringe will return to its original size.