Answer:
The answer is (C) geographical isolation
Explanation:
Speciation is most likely to occur when populations become geographically isolated from one another, and come to inhabit environments that differ significantly from one another.
<u>The impact of reef erosion on the coral reef community:</u>
The reef erosion takes place in the shores, and which the coastal properties are being more exposed to the damaging effect of the waves. They become colonised with the help of varied range of the organisms, that includes algae, corals and large diversity of species of fishes. Artificial reefs functions as the inundated breakwater. Then will dissipate the wave energy, which can further reduce the coral erosion and thus will protect the secured boats.
Answer:
the answer is a.presence of high metabolic rate
Raoult's law (/ˈrɑːuːlz/ law) is a law of thermodynamics established by French chemist François-Marie Raoult in 1887. [1] It states that the partial vapor pressure of each component of an ideal mixture of liquids is equal to the vapour pressure of the pure component multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapour pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.
Mathematically, Raoult's law for a single component in an ideal solution is stated as
{\displaystyle p_{i}=p_{i}^{\star }x_{i}},
where {\displaystyle p_{i}} is the partial pressure of the component {\displaystyle i} in the gaseous mixture (above the solution), {\displaystyle p_{i}^{\star }} is the vapor pressure of the pure component {\displaystyle i}, and {\displaystyle x_{i}} is the mole fraction of the component {\displaystyle i} in the mixture (in the solution).[2]
Once the components in the solution have reached equilibrium, the total vapor pressure of the solution can be determined by combining Raoult's law with Dalton's law of partial pressures to give
{\displaystyle p=p_{\rm {A}}^{\star }x_{\rm {A}}+p_{\rm {B}}^{\star }x_{\rm {B}}+\cdots }.
If a non-volatile solute (zero vapor pressure, does not evaporate) is dissolved into a solvent to form an ideal solution, the vapor pressure of the final solution will be lower than that of the solvent. The decrease in vapor pressure is directly proportional to the mole fraction of solute in an ideal solution.
{\displaystyle p=p_{\rm {A}}^{\star }x_{\rm {A}}}{\displaystyle \Delta p=p_{\rm {A}}^{\star }-p=p_{\rm {A}}^{\star }(1-x_{\rm {A}})=p_{\rm {A}}^{\star }x_{\rm {B}}}.
Principle of Raoult's LawEdit

Vapor pressure of a binary solution that obeys Raoult's law. The black line shows the total vapor pressure as a function of the mole fraction of component B, and the two green lines are the partial pressures of the two components.