Answer:
Convenience sampling.
Step-by-step explanation:
To gather information on customer satisfaction, a researcher goes into each store and interviews six randomly selected customers at each store. This sampling technique is called convenience sampling.
Convenience sampling can be defined as a sampling method which involves the researcher selecting or collecting data that is easily available or choosing the individuals who are easiest to reach in a population. It is a type of non-probability method of sampling where the first or easiest available data source is being used by the researcher without other requirements.
In this scenario, to gather information on customer satisfaction, the researcher went to the store most likely situated in a shopping mall to collect data from six (6) customers in each stores.
<em>Some of the advantages of convenience sampling are low cost, data are collected quickly, lesser rules etc. </em>
Answer:
One possible equation is
, which is equivalent to
.
Step-by-step explanation:
The factor theorem states that if
(where
is a constant) is a root of a function,
would be a factor of that function.
The question states that
and
are
-intercepts of this function. In other words,
and
would both set the value of this quadratic function to
. Thus,
and
would be two roots of this function.
By the factor theorem,
and
would be two factors of this function.
Because the function in this question is quadratic,
and
would be the only two factors of this function. In other words, for some constant
(
):
.
Simplify to obtain:
.
Expand this expression to obtain:
.
(Quadratic functions are polynomials of degree two. If this function has any factor other than
and
, expanding the expression would give a polynomial of degree at least three- not quadratic.)
Every non-zero value of
corresponds to a distinct quadratic function with
-intercepts
and
. For example, with
:
, or equivalently,
.
Answer:
The mean and the standard deviation of the number of students with laptops are 1.11 and 0.836 respectively.
Step-by-step explanation:
Let <em>X</em> = number of students who have laptops.
The probability of a student having a laptop is, P (X) = <em>p</em> = 0.37.
A random sample of <em>n</em> = 30 students is selected.
The event of a student having a laptop is independent of the other students.
The random variable <em>X</em> follows a Binomial distribution with parameters <em>n</em> and <em>p</em>.
The mean and standard deviation of a binomial random variable <em>X</em> are:

Compute the mean of the random variable <em>X</em> as follows:

The mean of the random variable <em>X</em> is 1.11.
Compute the standard deviation of the random variable <em>X</em> as follows:

The standard deviation of the random variable <em>X</em> is 0.836.
Answer:
<u>Frequency = 1/period =
</u>
Step-by-step explanation:
The frequency of the sinusoidal function = 1/period
Frequency is how many the function repeats itself per unit if time i.e: per "1"
For the given graph :
, Where: B = 2π/period
period = 2π/B , B = 1/4 = 0.25
∴ Period = 2π/0.25 = 8π
∴ Frequency = 1/period = 