The density of the gold is calculated to be "19,300 kg/m³".
<u>Explanation:</u>
Given:
Volume = 2cm³
Mass = 38.6 grams.
To Find:
Density of the gold = ?
Solution:
Density is obtained by dividing mass of the sample by its volume and it is given in the units of kg/m³.
Mass in grams is converted into kg as,
1 g = 0.001 kg
38. 6 g =
Now we have to convert cm³ to m³ as,
1 cm³ = 10⁻⁶ m³
2 cm³ = 2 × 10⁻⁶ m³
So Density =
Physical properties of Gold:
- It is Malleable and ductile.
- It is a corrosion resistant element.
<h2>
Kinetic energy of mass 4 kg ball is less than kinetic energy of mass 2 kg ball</h2>
Explanation:
Kinetic energy = 0.5 x Mass x Velocity²
For ball of mass 2 kg
Mass, m = 2 kg
Velocity, v = 4 m/s
Kinetic energy = 0.5 x 2 x 4² = 16 J
For ball of mass 4 kg
Mass, m = 4 kg
Velocity, v = 2 m/s
Kinetic energy = 0.5 x 4 x 2² = 8 J
Kinetic energy of mass 4 kg ball is less than kinetic energy of mass 2 kg ball
Answer:
Conservation
Explanation:
She has observation conservation because If the temperature of the liquids stays constant and the container is insulated and not heat or cool the liquid much would not change the density of the liquid very much so that it's original volume could remain constant.
The interesting thing is not that the child assumes the taller glass holds more liquid but that they fail to understand conservation: the fact that the water from one glass is going to be the same amount after being poured into any other container. It's as if they did not realize the water came from the same glass.
ΔVl = L di/dt
i = i₀e -t/T
di/dt = i₀ × (-1/T) e -t/T
ΔVl = L× (-I/T i₀e -t/T
ΔVl = -L/T i₀e -t/T
b. 15mm, i₀ = 36mA, T = 1.1m
t= Os
ΔVl = 0,491V
C. t = 1ms
ΔVl = 0.198V
t = 2ms
ΔVl = 0.08V
E. t = ms
ΔVl = 0.032V
Explanation:
Given that,
Mass of the rocket, m = 2150 kg
At time t=0 a rocket in outer space fires an engine that exerts an increasing force on it in the +x−direction. The force is given by equation :

Here F = 888.93 N when t = 1.25 s
(c) We can find the value of A first as :

The value of A is
.
(a) Let J is the impulse does the engine exert on the rocket during the 4.0 s interval starting 2.00 s after the engine is fired. It is given in terms of force as :

Limits will be from 2 s to 2+ 4 = 6 s
It implies :

(b) Impulse is also equal to the change in momentum as :

Hence, this is the required solution.