Based on the definition of <em>composite</em> figure, the area of the <em>composite</em> figure ABC formed by a semicircle and <em>right</em> triangle is approximately 32.137 square centimeters.
<h3>How to find the area of the composite figure</h3>
The area of the <em>composite</em> figure is the sum of two areas, the area of a semicircle and the area of a <em>right</em> triangle. The formula for the area of the composite figure is described below:
A = (1/2) · AB · BC + (π/8) · BC² (1)
If we know that AB = 6 cm and BC = 6 cm, then the area of the composite figure is:
A = (1/2) · (6 cm)² + (π/8) · (6 cm)²
A ≈ 32.137 cm²
Based on the definition of <em>composite</em> figure, the area of the <em>composite</em> figure ABC formed by a semicircle and <em>right</em> triangle is approximately 32.137 square centimeters.
To learn more on composite figures: brainly.com/question/1284145
#SPJ1
60,000,000,000 in scientific notation is 6 x 10^10 so you move the decimal 10 times.
Answer:
use multiple the numbers to get the co rrect
Step-by-step explanation:
32×6
=192
29×7=203
1.30 :)
All you have to do is see if the number on your left is greater than 5 or not if it’s is round up 1 if not it stays the same !
Hope this helped !!!