Answer:
The variables to be examined in relation to carbon dioxide use are the amount of light exposure and amount of dissolved CO2. Phenol red is yellow/orange under acidic conditions, that is when the pH of the solution is less than 7 (e.g. pH = 6). This occurs when the concentration of CO2 is high.
Explanation:
is this correct
Answer:
Compound X= 4-bromo-2,3,3-trimethylhexane
Compound Y= 5-chloro-2,3,3-trimethylhexane
Explanation:
The first step is set up the problem. That way we can obtain some clues. If we check figure 1 we can obtain some ideas:
-) If we have E2 reaction is not possible a <u>methyl or hydride shift</u>.
-) If we have an E2 reaction we will need an H in <u>anti position</u> to obtain the double bond. Therefore a double bond with the quaternary carbon (the carbon bonded to the 2 methyl groups).
The second step is to solve the alkene structure. We have to put the <u>leaving group</u> near to carbon that has more possible <u>removable hydrogens</u>. That's why the double bond is put it between carbons 5 and 4 of the alkane (Figure 2).
The third step is the structure of the <u>alkyl bromide</u> structure. To do this we have to check the alcohol produced by the alkene. In the <u>hydration of alkanes</u> reaction we will have a <u>carbocation</u> formation. Therefore we can have for the alkene proposed a methyl shift to obtain the most stable carbocation. With this in mind, we have to do the same for the Alkyl bromide that's why the Br is put it carbon 4 of the alkane. If we put the Br on this carbon we can have the chance of this <u>methyl shift</u> also, to obtain the same alcohol (figure 3).
Finally, for the <u>alkyl chloride</u>, we only have 2 choices because to produce the alkane we have to put the <u>leaving group</u> on one of the 2 carbons of the double bond. If we choose the same carbon on which we put the Br we can have the same behavior of the alkyl bromide (the <u>methyl shift</u>), therefore we have to put in the other carbon.
Answer:
Pb⁺²(aq) + CO₃⁻²(aq) → PbCO₃ (s)
In net ionic equation we cancel the ions that have equal moles on both sides so Na⁺¹ and NO₃⁻¹ have equal moles on both sides so we canceled them.
Explanation:
Net ionic equation:
In net ionic equation we only write the ions that are involved in reaction. If the system have same moles of ions in initial and final stages we cancel them as they have the same amount and are present in ionic form in the reaction medium. To formulate an ionic equation we just cancel the ions which have the same moles in initial and final stages.
Chemical equation:
Pb(NO₃)₂ (aq) + Na₂CO₃(aq) → PbCO₃ (s) + NaNO₃ (aq)
Balanced chemical equation:
In a balanced chemical equation we write the reactants and products in molecular form with number of moles.
Pb(NO₃)₂ (aq) + Na₂CO₃(aq) → PbCO₃ (s) + 2NaNO₃ (aq)
Ionic equation:
In ionic equation we write the equation in ionic form. It involves all the ions which will produce when we add any ionic compound in reaction medium.
Pb⁺² +2NO₃⁻¹ + CO₃⁻² + 2Na⁺¹ → PbCO3 (s) + 2NO₃⁻¹ (aq) + 2Na⁺¹ (aq)
Net ionic equation
In net ionic equation we cancel the ions that have equal moles on both sides. As we can see in the above ionic equation that Na⁺¹ and NO₃⁻¹ have equal moles on both sides so we canceled them.
Pb⁺²(aq) + CO₃⁻²(aq) → PbCO₃ (s)
Answer: The "bleaching" of plant leaves is caused by air pollution.
Sodium, chlorine, magnisium and alumium
Idk if that helps or not