To determine the maximum value of a quadratic function opening downwards, we are going to find the vertex; then the y-value of the vertex will be our maximum.
To find the vertex (h,k) (where h=x-coordinate and k=y-coordinate) of a quadratic function of the form

we'll use the vertex formula:

, and then we are going to replace that value in our original function to find k.
So, in our function

,

and

.
Lets replace those values in our vertex formula:



Now that we know the x-coordinate of our vertex, lets replace it in the original function, to get the y-coordinate:



We just prove that the vertex of

is (2,1), and for the graph we can tell that the vertex of

is (-2,4). The only thing left is compare their y-coordinates to determine w<span>hich one has the greater maximum value. Since 4>1, we can conclude that </span>

has the greater maximum.
Answer is in the attachment below.
<em><u>I</u></em><em><u> </u></em><em><u>don't</u></em><em><u> </u></em><em><u>know</u></em><em><u> </u></em><em><u> </u></em><em><u>i</u></em><em><u> </u></em><em><u>don't</u></em><em><u> </u></em><em><u>know</u></em><em><u> </u></em><em><u>i</u></em><em><u> </u></em><em><u>don't</u></em><em><u> </u></em><em><u>know</u></em><em><u> </u></em>
102x3=306
just multiply it