1)80
2)55
3)D
4)F
5)-20
6)B
Hope that helps
Answer: 1) The best estimate for the average cost of tuition at a 4-year institution starting in 2020 =$ 31524.31
2) The slope of regression line b=937.97 represents the rate of change of average annual cost of tuition at 4-year institutions (y) from 2003 to 2010(x). Here,average annual cost of tuition at 4-year institutions is dependent on school years .
Step-by-step explanation:
1) For the given situation we need to find linear regression equation Y=a+bX for the given situation.
Let x be the number of years starting with 2003 to 2010.
i.e. n=8
and y be the average annual cost of tuition at 4-year institutions from 2003 to 2010.
With reference to table we get

By using above values find a and b for Y=a+bX, where b is the slope of regression line.

and

∴ To find average cost of tuition at a 4-year institution starting in 2020.(as n becomes 18 for year 2020 if starts from 2003 ⇒X=18)
So, Y= 14640.85 + 937.97×18 = 31524.31
∴The best estimate for the average cost of tuition at a 4-year institution starting in 2020 = $31524.31
Lets compare both equations so we can explain the reason for it, and see it clearly:
<span>y1 = 5x + 1
</span><span>y2 = 4x + 2
y1 > y2
</span>5x + 1 > 4x + <span>2
</span>To see why that happens we need to solve for x:
5x - 4x > 2 - 1
x > 1
Therefore, the first equation is greater than the second for values of x > 1