The sum of the 8 terms of the series 1-1-3-5- ... -13 is -48
The given sequence is:
1,-1,-3, . . -13
and there are 8 terms.
The related series of this sequence is:
1-1-3-5- ... -13
Notice that the series is an arithmetic series with:
first term, a(1) = 1
common difference, d = -1 - (1) = -2
last term, a(8) = -13
To find the sum of the series, use the sum formula:
S(n) = n/2 [(a(1) + a(n)]
Substitute n = 8, a(1) = 1, a(n) = a(8) = -13 into the formula:
S(8) = 8/2 [1 + (-13)]
S(9) = 4 . (-12) = -48
Learn more about sum of a series here:
brainly.com/question/14203928
#SPJ4
The value of the 0 in the number 60,152 is the thousands place.
6 = ten thousand
0 = thousand
1 = hundreds
5 = tens
2 = ones
Hope helps!-Aparri
Answer:
The nonlinear system of equations has 4 solutions ⇒ B
Step-by-step explanation:
The number of solutions of a system of equations equal to the number of points of intersection of the graphs of the equations of the system
Let us use this note to solve the question
From the given figure
∵ The nonlinear system of equations represented by two curves and a circle
∵ Each curve intersects the circle into two points
∴ The number of the points of intersection is 4
→ By using the note above
∵ The number of intersection points equal to the number of solutions
∴ The number of solutions is 4
∴ The nonlinear system of equations has 4 solutions
The answer to the first one is a
Answer:
3:4
Step-by-step explanation:
18:24
=



3:4