Answer:
This is 0.14 to the nearest hundredth
Step-by-step explanation:
Firstly we list the parameters;
Drive to school = 40
Take the bus = 50
Walk = 10
Sophomore = 30
Junior = 35
Senior = 35
Total number of students in sample is 100
Let W be the event that a student walked to school
So P(w) = 10/100 = 0.1
Let S be the event that a student is a senior
P(S) = 35/100 = 0.35
The probability we want to calculate can be said to be;
Probability that a student walked to school given that he is a senior
This can be represented and calculated as follows;
P( w| s) = P( w n s) / P(s)
w n s is the probability that a student walked to school and he is a senior
We need to know the number of seniors who walked to school
From the table, this is 5/100 = 0.05
So the Conditional probability is as follows;
P(W | S ) = 0.05/0.35 = 0.1429
To the nearest hundredth, that is 0.14
Answer:
Looks good to me!
Step-by-step explanation:
Answer:
the answer is 157
Step-by-step explanation:
i had a test with the same question, i promise its right :)
A bag contains 10 tiles with the letters A, B, C, D, E, F, G, H, I, and J. Five tiles are chosen, one at a time, and placed in a
lora16 [44]
I assume in this item, we are to find at which step is the mistake done for the calculation of the unknown probability.
For the possible number of arrangement of letter, n(S), the basic principles of counting should be used.
= 10 x 9 x 8 x 7 x 6 = 30,240
This is similar as to what was done in Meghan's work.
For the five tiles to spell out FACED, there is only one (1) possibility.
Therefore, the probability should be equal to 1/30,240 instead of the 1/252 which was presented in the steps above.
X and Y are vertical angles, which mean they are the same.
The 3 inside angles need to equal 180 degrees, so solve for X:
X = 180 - 35 - 65 = 80 degrees.
Y = 80 degrees.