If it's three or more, the probability is 100%.
However, I will assume that you intend to draw only two balls and that you don't replace the first ball in the bag for the second draw.
So you draw one ball. The probability that it's red is 8/14 = 4/7.
You draw again. The probability of getting a second red is 7 (red balls remains) / 13 (balls remaining).
Assuming that the results of the first and second draws are independent,the probability of drawing two red balls is therefore (4/7)*(7/13) = 4/13.
Now, suppose instead of a red on the first draw you got white. The probability of this is 6/14 = 3/7.
Given the first ball is white, the probability of drawing a second white is 5/13.
So the probability of drawing two whites is (3/7)*(5/13) = 15/91.
The outcomes of drawing two reds or two whites are independent of each other, so you can add the probabilities to get the probability of drawing two balls of the same colour, i.e.
4/13 + 15/91 = 43/91
If you prefer to express it as a percentage, it's approximately 47.25%.
Answer:

Assuming that there are only 2 flavors of the sweet ⇻ strawberry & orange.
____________________
P (strawberry flavored sweet) = 0.8
P (orange flavored sweet) = ?
____________________
Now, we know that ➳ the value of probability ≤ 1. So, the probability of orange flavored sweets is less than 1.
____________________
So,
P (orange flavored sweet) = 1 - P (strawberry flavored sweet)
P (orange flavored sweet) = 
P (orange flavored sweet) = 
____________________
✐ The probability that the sweet is orange flavored is <u>0</u><u>.</u><u>2</u>
____________________
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ
# ꧁❣ RainbowSalt2²2² ࿐
Answer:
(x + 3) ( x - 6)
Step-by-step explanation:
x² - 3x - 18
x² - 6x + 3x - 18
x(x - 6) + 3(x - 6)
(x + 3) ( x - 6)
Try 9:2 and 3:1 but I'm not sure if that's right or not
Answer:
A. -50
Step-by-step explanation:
The question is asking you to find the Y point as they gave you the X.
(0,-50). -50 on the y-axis explains the x of 0. If you though it was 14 or -6, it is not because they have the x of -6 and the y of 0.