How Do You Solve (8x+7)^3?
2 answers:
<span><span>(<span><span>8x</span>+7</span>)</span>*<span>(<span><span>8x</span>+7</span>)</span></span>*<span>(<span><span>8x</span>+7</span><span>)
</span></span><span>(<span><span>8x</span>+7</span>)</span><span>(<span><span><span>64<span>x^2</span></span>+<span>112x</span></span>+49</span><span>)
</span></span><span><span><span><span><span><span><span>(<span>8x</span>)</span><span>(<span>64<span>x^2</span></span>)</span></span>+<span><span>(<span>8x</span>)</span><span>(<span>112x</span>)</span></span></span>+<span><span>(<span>8x</span>)</span><span>(49)</span></span></span>+<span><span>(7)</span><span>(<span>64<span>x^2</span></span>)</span></span></span>+<span><span>(7)</span><span>(<span>112x</span>)</span></span></span>+<span><span>(7)</span><span>(49)
</span></span></span><span><span><span><span><span>512<span>x^3</span></span>+<span>896<span>x^2</span></span></span>+<span>392x</span></span>+<span>448<span>x^2</span></span></span>+<span>784x</span></span>+<span>343
</span>Answer:
<span><span><span>512<span>x^3</span></span>+<span>1344<span>x^2</span></span></span>+<span>1176x</span></span>+<span>343</span>
I would use pascal's triangle
goes like this
0 1
1 1 1
2 1 2 1
3 1 3 3 1
the numbers on the left are the power of the binomial
baseically for the third power
(a+b)^3=1a^3b^0+3a^2+b^1+3a^1+b^2+1a^0+b^3
so you have
(8x+7)^3=1(8x)^3(7)^0+3(8x)^2(7)^1+3(8x)^1(7)^2+1(8x)^0(7)^3=
512x^3+1344x^2+1176x+343
You might be interested in
Pi=3.14. X=(3.14+3)/2. X=6.14/2. X=3.07 :)
It’s 12.60 because 12 divided by .5 which is percents then it’s 12.60
Q(3) = -2(3)+2 = -4
r(q(3)) = (-4)^2-1 = 15
X is equal to 2 because thirty divide fifteen is two
1 2 and 4. it won’t let my answer be that short