Use a factor<span> tree to express </span>60<span> as a </span>product<span> of prime </span>factors<span>. So the prime factorization of </span>60<span> is 2 × 2 × 3 × 5, which can be written as 2 </span>2<span> × 3 × 5.</span>
Answer: The surface area of the planter will be 120.5 square feet.
In our shape, we will have 5 sides. The base and the four sides going up from each edge of the base.
The base will be 7 x 5 = 35 square feet.
The front and back side will each be 7 x 0.75 = 5.25 square feet.
The left and right side will each be 5 x 0.75 = 3.75 square feet.
If we add up the 5 faces we get:
35 + 5.25 + 5.25 + 3.75 + 3.75 = 120.5 square feet
Answer:
32 pizzas
60 pizzas
1/24
Step-by-step explanation:
Se hicieron 8 docenas de pizzas.
Una docena es 12, por lo tanto, el número de pizzas hechas fue:
8 * 12 = 96 pizzas
1/3 se vendieron en el local, esto significa que el número de pizzas vendidas en el local es:
1/3 * 96 = 32 pizzas
5/8 fueron para entrega a domicilio, por lo tanto, el número de pizzas vendidas en casa es:
5/8 * 96 = 60 pizzas
El número total de pizzas vendidas es:
32 + 60 = 92 pizzas
Esto significa que no se vendieron 4 pizzas. En forma de fracción:
4/96 = 1/24
Answer:
The correct answer is 0.94147
Step-by-step explanation:
Let A denote the event that the podiatrist finds the first person with an ingrown toenail.
And (1 - A) denote the event that the podiatrist does not find the ingrown toenail.
While examining seven people, the podiatrist can find the very first person to have an ingrown toenail. Similarly he can find the second patient to have the ingrown toenail. Going in this way the probability of the first person to have an ingrown toenail is given by:
= A + (1 - A) × A + (1 - A) × (1 - A) × A + (1 - A) × (1 - A) × (1 - A) × A + (1 - A) × (1 - A) × (1 - A) × (1 - A) × A + (1 - A) × (1 - A) × (1 - A) × (1 - A) × (1 - A) × A + (1 - A) × (1 - A) × (1 - A) × (1 - A) × (1 - A) × (1 - A) × A.
= 
= 
= 0.94147
We can also solve the above expression by using the geometric progression formula as well where common ratio is given by
.