Answer:
f
Step-by-step explanation:
8x - (5x + 4) ≥ -31
8x -5x - 4 ≥ -31
3x ≥ -31 + 4
3x ≥ -27
x ≥ - 9
Answer: a numbe line with a circle on - 9 and shading to the left.
Because that drawing represents the number that are less or equel than -9 and the answer is the numbers greater or equal than -9.
Answer:
Here is the complete question (attachment).
The function which represent the given points are 
Step-by-step explanation:
We know that a general exponential function is like,
We can find the answer by hit and trial method by plugging the values of
coordinates.
Here we are going to solve this with the above general formula.
So as the points are
then for 
Can be arranged in terms of the general equation.
...equation(1) and
...equation(2)

Plugging the values in equation 2.
We have
![\frac{16}{b} b^4=128,16\times b^3=128,b=\sqrt[3]{\frac{128}{16}} =\sqrt[3]{8}=2](https://tex.z-dn.net/?f=%5Cfrac%7B16%7D%7Bb%7D%20b%5E4%3D128%2C16%5Ctimes%20b%5E3%3D128%2Cb%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B128%7D%7B16%7D%7D%20%3D%5Csqrt%5B3%5D%7B8%7D%3D2)
Plugging
in equation 1.
We have 
Comparing with the general equation of exponential
and 
So the function which depicts the above points =
From theoption we have B as the correct answer.
Answer:
0
Step-by-step explanation:
4[24-3(7x+6)]-6(4-14x)
4(24-21x-18)-24+84x
96-84x-72-24+84x
96-72-24-84x+84x
0 + 0
0
Answer:
a(7) = -0.4
Step-by-step explanation:
The general formula for a geometric progression is a(n) = a(1)*r^(n - 1), where r is the common ratio. In this problem, a(1) = -6250. To find r, we divide 1250 (the 2nd term) by -6250 (the 1st term), obtaining r = -0.2.
Then the formula for THIS geometric progression is
a(n) = -6250*(-0.2)^(n - 1).
Thus, the 7th term of THIS progression is
a(7) = -6250*(-0.2)^(7 - 1), or -6250*(-0.2)^6, or -0.4