Answer:
25 in
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Trigonometry</u>
[Right Triangles Only] Pythagorean Theorem: a² + b² = c²
- a is a leg
- b is another leg
- c is the hypotenuse<u>
</u>
Step-by-step explanation:
<u>Step 1: Identify</u>
Leg a = 24
Leg b = 7 in
Leg c = <em>x</em>
<em />
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in variables [Pythagorean Theorem]: 24² + 7² = x²
- Evaluate exponents: 576 + 49 = x²
- Add: 625 = x²
- [Equality Property] Square root both sides: 25 = x
- Rewrite/Rearrange: x = 25
The answer is 254.35 in square
Both triangle are isosceles, which means their base angles are congruent.
54 + 2y = 180
2y = 126
y = 63
The measure of the base angles of the triangle on the left is 63 degrees.
180 - 63 = 117
117 + 2x = 180
2x = 63
x = 31.5
Answer:
x = 31.5
Hope this helps.
Answer:
m<CDE=66 degrees.
Step-by-step explanation:
(1) Extend the segment DC so it intersects with line BA. Call the intersection F.
(2) Consider triangle BCF. In here, we are given m<ABC=24 deg. Since m<BCD = 90 deg, we known that m<BCF = 90 deg. Knowing two angles in the triangle BCF lets us determine the rhird angle m<BFC = 180-90-24 = 66 deg.
(3) Because of the fact that AB || DE and the fact that line DF intersects AB and DE, the angles <BFC and <CDE are congruent. Therefore m<CDE=66 deg.