Answer:
I would say A
if I am wrong, I am sooo sorry.
Explanation:
The answer is B. The citys tax base begins to increase because if it is redlines then they have to move somewhere else where it is harder to get money so they have to increase the taxes
Answer:
Hey!
Stars are formed from massive clouds of dust and gas in space CALLED NEBULAE. Gravity pulls the dust and gas together to form a PROTOSTAR...much like a baby star!
These gases come together, and as they do, the temperature begins to increase...
The finished stars are formed when the OPTIMUM TEMPERATURE is released for the chemical reactions within to start!
OUR SUN'S COLOUR IS WHITE! (Although its actually all the colours mixed together)
Explanation:
HOPE THIS HELPS!!
Saturn is predominately composed of hydrogen and helium, yet doesn't undergo fusion like the Sun due to the lacking mass.
The world’s ocean is crucial to heating the planet. While land areas and the atmosphere absorb some sunlight, the majority of the sun’s radiation is absorbed by the ocean. Particularly in the tropical waters around the equator, the ocean acts a as massive, heat-retaining solar panel. Earth’s atmosphere also plays a part in this process, helping to retain heat that would otherwise quickly radiate into space after sunset.
The ocean doesn't just store solar radiation; it also helps to distribute heat around the globe. When water molecules are heated, they exchange freely with the air in a process called evaporation. Ocean water is constantly evaporating, increasing the temperature and humidity of the surrounding air to form rain and storms that are then carried by trade winds, often vast distances. In fact, almost all rain that falls on land starts off in the ocean. The tropics are particularly rainy because heat absorption, and thus ocean evaporation, is highest in this area. Outside of Earth’s equatorial areas, weather patterns are driven largely by ocean currents. Currents are movements of ocean water in a continuous flow, created largely by surface winds but also partly by temperature and salinity gradients, Earth’s rotation, and tides (the gravitational effects of the sun and moon). Major current systems typically flow clockwise in the northern hemisphere and counterclockwise in the southern hemisphere, in circular patterns that often trace the coastlines. Ocean currents act much like a conveyer belt, transporting warm water and precipitation from the equator toward the poles and cold water from the poles back to the tropics. Thus, currents regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth’s surface. Without currents, regional temperatures would be more extreme—super hot at the equator and frigid toward the poles—and much less of Earth’s land would be habitable.