Answer:
The expression that represents the profit is ![p(x) =3x-180](https://tex.z-dn.net/?f=p%28x%29%20%3D3x-180)
Step-by-step explanation:
The Profit function P(x) is the difference between the Revenue function R(x) and the Cost function C(x)
![P(x) = R(x)-C(x)](https://tex.z-dn.net/?f=P%28x%29%20%3D%20R%28x%29-C%28x%29)
Finding the profit function.
For this exercise the revenue is given by
![R(x) = 5x^2+2x-80](https://tex.z-dn.net/?f=R%28x%29%20%3D%205x%5E2%2B2x-80)
And the cost function is modeled by
![C(x) = 5x^2-x+100](https://tex.z-dn.net/?f=C%28x%29%20%3D%205x%5E2-x%2B100)
Thus the profit function is
![P(x) = 5x^2+2x-80- (5x^2-x+100)](https://tex.z-dn.net/?f=P%28x%29%20%3D%205x%5E2%2B2x-80-%20%285x%5E2-x%2B100%29)
Distributing the negative sign.
![P(x) = 5x^2+2x-80- 5x^2+x-100](https://tex.z-dn.net/?f=P%28x%29%20%3D%205x%5E2%2B2x-80-%205x%5E2%2Bx-100)
Combining like terms to finally get the simplified profit function
![\boxed{P(x) = 3x-180}](https://tex.z-dn.net/?f=%5Cboxed%7BP%28x%29%20%3D%203x-180%7D)