Answer:
∂u/∂xi = i·cos(sn)
Step-by-step explanation:
For u = sin(v), the partial derivative of u with respect to xi is ...
∂u/∂xi = cos(v)·∂v/xi
In this case, v=sn, and ∂sn/∂xi = i, so the derivatives of interest are ...
∂u/∂xi = i·cos(sn)
3x³ + x + 2x³ - 4x² - 2(y + x)
3x³ + 2x³ - 4x² + x - 2(y) - 2(x)
5x³ - 4x² + x - 2y - 2x
5x³ - 4x² + x - 2x - 2y
5x³ - 4x² - x - 2y
Answer:
406794000
Step-by-step explanation: