<h3>Answer to Question 1:</h3>
AB= 24cm
BC = 7cm
<B = 90°
AC = ?
<h3>Using Pythagoras theorem :-</h3>
AC^2 = AB^2 + BC ^ 2
AC^2 = 24^2 + 7^2
AC^2 = 576 + 49
AC^2 = √625
AC = 25
<h3>Answer to Question 2 :-</h3>
sin A = 3/4
CosA = ?
TanA = ?
<h3>SinA = Opp. side/Hypotenuse</h3><h3> = 3/4</h3>
(Construct a triangle right angled at B with one side BC of 3cm and hypotenuse AC of 4cm.)
<h3>Using Pythagoras theorem :-</h3>
AC^2 = AB^2 + BC ^ 2
4² = AB² + 3²
16 = AB + 9
AB = √7cm
<h3>CosA = Adjacent side/Hypotenuse</h3>
= AB/AC
= √7/4
<h3>TanA= Opp. side/Adjacent side</h3>
=BC/AB
= 3/√7
Answer: (-7,3)
Step-by-step explanation:
I believe it is y= -x + 4
Answer:
56 = (0.85)w
Step-by-step explanation:
"is" translates to "=".
"of" translates to "×".
We can let "what number" translate to "w".
Then ...
56 is 85% of what number . . . . translates to ...
56 = 0.85×w
_____
Of course, you know that 85% = 85/100 = 0.85.
The garden area is maximum when the enclosure is a square.
If a is the length of the side of the square then the length of the building is also a.
The perimeter length is 4a made up of 81+a feet, so 81+a=4a and 3a=81 making a=27 feet.