F(x)=x+c, where c is an arbitrary constant.
if c is positive then translation above
if c is negative then translation down
reflection of f(x)=x^2 across x-axis then
f(x)=-x^2
The answer is C) 0.04 becuase the 4 is in the hundredths place
the answer is 34.83 I believe
Answer:
1. 625,000 J
2. 100 J
4. 5 kg
5. √5 ≈ 2.236 m/s
Step-by-step explanation:
You should be aware that the SI derived units of Joules are equivalent to kg·m²/s².
To reduce confusion between <em>m</em> for mass and m for meters, we'll use an <em>italic m</em> for mass.
In each case, the "find" variable is what's left after we put the numbers into the formula. It is what the question is asking for. The "given" values are the ones in the problem statement and are the values we put into the formula. The formula is the same in every case.
__
1. KE = (1/2)<em>m</em>v² = (1/2)(2000 kg)(25 m/s)² = 625,000 kg·m²/s² = 625,000 J
__
2. KE = (1/2)<em>m</em>v² = (1/2)(0.5 kg)(20 m/s)² = 100 kg·m²/s² = 100 J
__
4. KE = (1/2)<em>m</em>v²
250 J = (1/2)<em>m</em>(10 m/s)² = 50 m²/s²
(250 kg·m²/s²)/(50 m²/s²) = <em>m</em> = 5 kg
__
5. KE = (1/2)<em>m</em>v²
2000 kg·m²/s² = (1/2)(800 kg)v²
(2000 kg·m²/s²)/(400 kg) = v² = 5 m²/s²
v = √5 m/s ≈ 2.236 m/s
1/100, 1/400, 1/500
Because the numerators are the same, we just need to compare the denominators.
100< 400< 500
⇒ 1/100 > 1/400 > 1/500
Therefore, the highest value is 1/100.
Hope this helps.