Answer:
x-2,y= 3, it can also be written as (2 ,3)
Step-by-step explanation:
2x-7y=5x-7-2x-7=5x-75x+2x=
7+77x=14x=2y=5x-7=5*2-7=10-..
A-$70 is the correct answer, even though im not sure.
Answer:
- L(t) = 727.775 -51.875cos(2π(t +11)/365)
- 705.93 minutes
Step-by-step explanation:
a) The midline of the function is the average of the peak values:
(675.85 +779.60)/2 = 727.725 . . . minutes
The amplitude of the function is half the difference of the peak values:
(779.60 -675.85)/2 = 51.875 . . . minutes
Since the minimum of the function is closest to the origin, we choose to use the negative cosine function as the parent function.
Where t is the number of days from 1 January, we want to shift the graph 11 units to the left, so we will use (t+11) in our function definition.
Since the period is 365 days, we will use (2π/365) as the scale factor for the argument of the cosine function.
Our formula is ...
L(t) = 727.775 -51.875cos(2π(t +11)/365)
__
b) L(55) ≈ 705.93 minutes
the reciprocal is 15 by 12
f(x) has the smallest minimum. The minimum value of f(x) is -3
The largest sin(x) can get is 1.
This applies to sin(2x-pi) as well. So f(x) is as small as -5*(1)+2 = -5+2 = -3.
You can see this each time the red curve bottoms out at y = -3.
The smallest that g(x) can get is y = -2 as shown at the vertex (3,-2)
The smallest that h(x) can get is y = 3 as shown by the point (1,3)
See the attachment for a visual comparison of the three functions.