<h2><em>What is (2/x^2)^3 reduced to simplest form ?</em></h2>
<em>A. 8x^-6 </em>
<em>B. 8x^6</em>
<em> C. 6/x^6</em>
<em> <u>D. 8/ x^6</u></em>
<em><u>hope </u></em><em><u>it</u></em><em><u> helps</u></em>
Answer:
never
Step-by-step explanation:
The expression: ~q means "not q"
If ~q is false, then q is true
The expression:
If p is true and ~q is false
is equivalent to:
If p is true and q is true
then:
If p is true and q is true, then p -> q is <u>never</u> false (or is always true, see table attached). Or:
If p is true and ~q is false, then p -> ~q is <u>never</u> false.
Answer:
Step-by-step explanation:
You could use anything that does not change the value of 3 in 0.53 or the 4 in 0.54
So for example
0.533
0.536
0.538
all would make the sentence above true.
Answer:
Step-by-step explanation:
<u>Given </u><u>:</u><u>-</u><u> </u>
And we need to find out the Inverse of the function . Let us assume that f(x) = y . Now , firstly replace x with y and vice versa.
<u>Function</u><u> </u><u>:</u><u>-</u><u> </u>
<u>Interchanging</u><u> </u><u>x </u><u>and </u><u>y </u><u>:</u><u>-</u><u> </u>
<u>Solve </u><u>out</u><u> </u><u>for </u><u>y </u><u>:</u><u>-</u><u> </u>
<u>Replace</u><u> </u><u>y with</u><u> </u><u>f-¹</u><u>(</u><u>x)</u><u> </u><u>:</u><u>-</u><u> </u>
<u>Hence </u><u>the </u><u>inverse</u><u> of</u><u> the</u><u> function</u><u> is</u><u> </u><u>-x/</u><u>4</u><u>-</u><u>3</u><u> </u><u>.</u>