One of the zeroes would be : x = 1
f (1) = 1^3 + 6(1) ^2 + 3 (1) - 10
f(1) = 1 + 6 + 3 - 10
f (1) = 10 - 10
f (1) = 0
Hope this helps
The last part answers the first part for you, just look at the y-values.
In other words:
<em>A'</em><em> </em>(-8, 2)
<em>B'</em> (-4, 3)
<em>C'</em> (-2, 8)
<em>D'</em> (-10, 6)
Explanation:
When you reflect any point over the x-axis, the y-value of the ordered pair is going to change.
This makes sense especially considering that the x-axis is horizontal, so the only way you could cross is to move up or down. If you were to move left or right, you'd only be able to cross the y-axis, since it's vertical.
Now for the last part, as I mentioned above, if you are reflecting across the y-axis, the x-values of the ordered pair is going to change.
<em>A'</em><em>'</em> (8, 2)
<em>B'</em><em>'</em> (4, 3)
<em>C'</em><em>'</em> (2, 8)
<em>D'</em><em>'</em> (10, 6)
Take note that the only thing that changes for the respective value is its sign, while the number itself stays the same.
The correct answer is one doughnut cost 2$
Answer:
Let's define two transformations.
Vertical translation.
If we have a function f(x), a vertical translation of N untis is written as:
g(x) = f(x) + N
If N is positive, then the translation is upwards
If N is negative, then the translation is downwards.
Horizontal translation.
If we have a function f(x), a horizontal translation of N units is written as:
g(x) = f(x - N)
if N is positive, then the translation is to the right
If N is negative, then the translation is to the left.
Now we have a function g(x) that is a transformation of a parent function f(x) (we actually do not know which parent function, so i assume f(x) = x^2) such that we have a shift right 5 units and up 3 units.
Then:
g(x) = f(x - 5) + 3
and again, using f(x) = x^2
g(x) = (x - 5)^2 + 3
Answer:
i am very confused...
Step-by-step explanation:
but im going to ask that n= (3,2)