Answer:
equation A
Step-by-step explanation:
Answer:
C=x+200
the y intercept is 200.
the y intercept represents $200 after 0 phones
About 99.7% of vehicles whose speeds are between 59 miles per hour and 77 miles per hour.
Empirical rule states that for a normal distribution, 68% lie within one standard deviations, 95% lie within two standard deviations, and 99.7% lie within three standard deviations of the mean.
Given that mean (μ) = 68 miles per hour, standard deviation (σ) = 3 miles per hour.
68% lie within one standard deviation = (μ ± σ) = (68 ± 3) = (65, 71).
Hence 68% of the vehicle speed is between 65 miles per hour and 71 miles per hour.
95% lie within two standard deviation = (μ ± 2σ) = (68 ± 2*3) = (62, 74).
Hence 95% of the vehicle speed is between 62 miles per hour and 74 miles per hour.
99.7% lie within three standard deviation = (μ ± 3σ) = (68 ± 3*3) = (59, 77).
Hence 99.7% of the vehicle speed is between 59 miles per hour and 77 miles per hour.
Find out more at: brainly.com/question/14468516
The solution to the given differential equation is yp=−14xcos(2x)
The characteristic equation for this differential equation is:
P(s)=s2+4
The roots of the characteristic equation are:
s=±2i
Therefore, the homogeneous solution is:
yh=c1sin(2x)+c2cos(2x)
Notice that the forcing function has the same angular frequency as the homogeneous solution. In this case, we have resonance. The particular solution will have the form:
yp=Axsin(2x)+Bxcos(2x)
If you take the second derivative of the equation above for yp , and then substitute that result, y′′p , along with equation for yp above, into the left-hand side of the original differential equation, and then simultaneously solve for the values of A and B that make the left-hand side of the differential equation equal to the forcing function on the right-hand side, sin(2x) , you will find:
A=0
B=−14
Therefore,
yp=−14xcos(2x)
For more information about differential equation, visit
brainly.com/question/18760518
Answer:
Sensory adaptation? im guessing
Step-by-step explanation: