1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexdok [17]
3 years ago
7

An airplane pilot fell 370 m after jumping without his parachute opening. He landed in a snowbank, creating a crater 1.5 m deep,

but survived with only minor injuries. Assume that the pilot's mass was 84 kg and his terminal velocity was 50 m/s.estimate
Mathematics
1 answer:
Vikentia [17]3 years ago
7 0

Answer:

he ded

Step-by-step explanation:

\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \tohe no alive  because ⇆ω⇆π⊂∴∨α∈\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to

You might be interested in
Write an algebraic rule to describe the translation P(–8, 6)
yKpoI14uk [10]
T_(-8,6): (x,y) -> (x-8, y+6)
5 0
3 years ago
How many solutions does the equation 5x-8=3x+8​
posledela

Answer:

One solution

Step-by-step explanation:

5x-8 = 3x+8

2x = 16

x = 8 = true once

5 0
3 years ago
Read 2 more answers
Isa finished 30% of his homework in 27 minutes. How many more minutes will it take Isa to complete his homework, assuming that h
Brilliant_brown [7]

Answer:

90 Minutes

Step-by-step explanation:

If he took 27 minutes to do 30% of his homework, then we can reverse the operation to find the total amount

30% is the same as 0.3, therefore you divide 27 by 0.3 because the 100% is 1, so by dividing you'll get the 100%.

7 0
3 years ago
Read 2 more answers
Body surface area is calculated a) in m2 from weight and height. b) from height. c) from weight. d) in meters from weight and he
Darina [25.2K]
Body surface area = the square root of product of the weight in kg times the height in cm divided by 3600.




Mark brainliest please mark


Hope this helps you
3 0
3 years ago
Read 2 more answers
Which algerbraic expression is not equivalent to 13x + 10​
atroni [7]
There are no common factors between the two terms
13
x
and
10
- see explanation below.
Explanation:
First, we can try factoring the constants in each term:
13 is a prime number and therefore can only be factored to 1 and 13.
10 can be factored as (1 x 10) or (2 x 5).
Because there are no common factors other than
1
the constants cannot be factored.
And, because there is no
x
in the second term (10), we cannot factor an
x
out of the two terms.
Therefore this expression cannot be factored.
4 0
3 years ago
Other questions:
  • How can you prove that a conjecture is false?
    13·1 answer
  • I need help on my homework
    11·2 answers
  • Write an expression with four terms. Include at least one term with an exponent, one term with a coefficient of 5, one term with
    7·1 answer
  • What is 2/3 and 5/6 by doing common denominator i need this within 4 minutes
    6·1 answer
  • The height of a parallelogram is 4.5 CM the base is twice the height what is the area
    8·1 answer
  • Which best describes the shape of the distribution
    11·2 answers
  • Identify the value of a if<br> y= a (x − 2)(x + 4)<br> and the point (4,8) is on the graph.
    11·1 answer
  • Please help whats the last meter on 10 will mark brainliest!
    7·1 answer
  • PLS HELP ASAP SHOW EXPLANATION WILL GUVE BRAINLIEST
    15·1 answer
  • A man is dealt 4 spade cards from an ordinary deck of 52 cards. If he is given five more, what is the probability that none of t
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!