1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexdok [17]
3 years ago
7

An airplane pilot fell 370 m after jumping without his parachute opening. He landed in a snowbank, creating a crater 1.5 m deep,

but survived with only minor injuries. Assume that the pilot's mass was 84 kg and his terminal velocity was 50 m/s.estimate
Mathematics
1 answer:
Vikentia [17]3 years ago
7 0

Answer:

he ded

Step-by-step explanation:

\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \tohe no alive  because ⇆ω⇆π⊂∴∨α∈\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq  \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right.  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to

You might be interested in
Guys please help me i need pictures
attashe74 [19]

Answer:

See the graph below.

Step-by-step explanation:

The graph is vertically translated by 6.

f(x) + 6 is indicated by blue line.

4 0
3 years ago
The map shows the location of four places in a city.
SIZIF [17.4K]
Mikes house is in quadrant III [ 3 ]

There is no specification of the coordinates of his house.
4 0
2 years ago
10)<br>Simplify the expression.<br>6(4x + 12) – 9x - 18 - 4(-6)<br>​
aleksklad [387]

Answer:

\boxed{\bold{15x+78}}

Step By Step Explanation:

Apply Rule - (-a) = a

\bold{6\left(4x+12\right)-9x-18+4\cdot \:6}

Multiply: 4 · 6 = 24

\bold{6\left(4x+12\right)-9x-18+24}

Expand \bold{6\left(4x+12\right): \ 24x+72}

= \bold{24x+72-9x-18+24}

Simplify \bold{24x+72-9x-18+24}

= \bold{15x+78}

━ Mordancy ━

4 0
3 years ago
Matilda mixed 8 parts cranberry juice with 4 parts apple juice to make cran-apple juice. what is the ratio of cranberry juice to
Paladinen [302]
The ratio of cranberry juice to apple juice is 2:1 or 2 to 1

Both 8 and 4 can be divided by 4 so divide (cranberry juice—>) 8 by 4 to get 2. Divide (apple juice—>) 4 by 4 to get 1, now put them in the correct spot which equals 2:1 or 2 to 1
6 0
3 years ago
A 6 inch personal pizza has 620 calories, with 240 of those from fat. A 12 inch pizza is cut into 8 slices. Estimate the number
kolbaska11 [484]

9514 1404 393

Answer:

  310 calories (120 from fat)

Step-by-step explanation:

A 12-inch pizza has double the diameter of the 6-inch pizza, so will have 2² = 4 times the area. 1/8 of that pizza will have 4/8 = 1/2 the area of the personal pizza. If calories are proportional to the area, then the slice will have ...

  (1/2)(620 calories) = 310 calories . . . in 1 slice of 12-in pizza

4 0
3 years ago
Other questions:
  • Is 3/24 or 1/8 greater?
    8·2 answers
  • Equations with fractions that equal 12
    14·1 answer
  • Somebody please help with correct answer and explanation??!!
    5·1 answer
  • Pete earns graduated commission on his sales each month. He earns 7% commission on the first $35,000 in sales and 9% on anything
    8·2 answers
  • Will someone help me with this question plz?
    6·2 answers
  • Which of the following best describes the pattern in the diagram as you move
    11·1 answer
  • The circular play area has a diameter of 16 ft. There is a walkway that surrounds the play area is 3' wide. What is the area of
    5·1 answer
  • State the domain and range of the relation below.
    14·1 answer
  • A piece of string 25 1/2 inches long will be cut into 3/4 inch pieces. How many pieces will there be
    9·1 answer
  • If the scale factor between two circles is 2x/5y, what is the ratio of their areas?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!